BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 23302493)

  • 1. The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses.
    García-Gutiérrez L; Zeriouh H; Romero D; Cubero J; de Vicente A; Pérez-García A
    Microb Biotechnol; 2013 May; 6(3):264-74. PubMed ID: 23302493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca.
    Romero D; de Vicente A; Rakotoaly RH; Dufour SE; Veening JW; Arrebola E; Cazorla FM; Kuipers OP; Paquot M; Pérez-García A
    Mol Plant Microbe Interact; 2007 Apr; 20(4):430-40. PubMed ID: 17427813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits.
    Zeriouh H; Romero D; Garcia-Gutierrez L; Cazorla FM; de Vicente A; Perez-Garcia A
    Mol Plant Microbe Interact; 2011 Dec; 24(12):1540-52. PubMed ID: 22066902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca.
    Romero D; de Vicente A; Olmos JL; Dávila JC; Pérez-García A
    J Appl Microbiol; 2007 Oct; 103(4):969-76. PubMed ID: 17897200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca.
    Romero D; Pérez-García A; Rivera ME; Cazorla FM; de Vicente A
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):263-9. PubMed ID: 13680203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative histochemical analyses of oxidative burst and cell wall reinforcement in compatible and incompatible melon-powdery mildew (Podosphaera fusca) interactions.
    Romero D; Eugenia Rivera M; Cazorla FM; Codina JC; Fernández-Ortuño D; Torés JA; Pérez-García A; de Vicente A
    J Plant Physiol; 2008 Dec; 165(18):1895-905. PubMed ID: 18585824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity.
    Zeriouh H; de Vicente A; Pérez-García A; Romero D
    Environ Microbiol; 2014 Jul; 16(7):2196-211. PubMed ID: 24308294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of prumycin produced by Bacillus amyloliquefaciens SD-32 in biocontrol against cucumber powdery mildew disease.
    Tanaka K; Fukuda M; Amaki Y; Sakaguchi T; Inai K; Ishihara A; Nakajima H
    Pest Manag Sci; 2017 Dec; 73(12):2419-2428. PubMed ID: 28560847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactin and fengycin contribute to the protection of a Bacillus subtilis strain against grape downy mildew by both direct effect and defence stimulation.
    Li Y; Héloir MC; Zhang X; Geissler M; Trouvelot S; Jacquens L; Henkel M; Su X; Fang X; Wang Q; Adrian M
    Mol Plant Pathol; 2019 Aug; 20(8):1037-1050. PubMed ID: 31104350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease.
    Alvarez F; Castro M; Príncipe A; Borioli G; Fischer S; Mori G; Jofré E
    J Appl Microbiol; 2012 Jan; 112(1):159-74. PubMed ID: 22017648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides?
    Yamamoto S; Shiraishi S; Suzuki S
    Lett Appl Microbiol; 2015 Apr; 60(4):379-86. PubMed ID: 25511625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis.
    Ellinger D; Naumann M; Falter C; Zwikowics C; Jamrow T; Manisseri C; Somerville SC; Voigt CA
    Plant Physiol; 2013 Mar; 161(3):1433-44. PubMed ID: 23335625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of mycoparasitic fungi on the development of Sphaerotheca fusca in melon leaves.
    Romero D; Rivera ME; Cazorla FM; de Vicente A; Pérez-García A
    Mycol Res; 2003 Jan; 107(Pt 1):64-71. PubMed ID: 12735245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii), a constant threat to cucurbits.
    Pérez-García A; Romero D; Fernández-Ortuño D; López-Ruiz F; De Vicente A; Torés JA
    Mol Plant Pathol; 2009 Mar; 10(2):153-60. PubMed ID: 19236565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of resistance in wheat by bacterial cyclic lipopeptides.
    Khong NG; Randoux B; Deravel J; Tisserant B; Tayeh Ch; Coutte F; Bourdon N; Jacques P; Reignault P
    Commun Agric Appl Biol Sci; 2013; 78(3):479-87. PubMed ID: 25151823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defense gene expression is potentiated in transgenic barley expressing antifungal peptide Metchnikowin throughout powdery mildew challenge.
    Rahnamaeian M; Vilcinskas A
    J Plant Res; 2012 Jan; 125(1):115-24. PubMed ID: 21516363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis.
    Zimmerli L; Stein M; Lipka V; Schulze-Lefert P; Somerville S
    Plant J; 2004 Dec; 40(5):633-46. PubMed ID: 15546348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease.
    Fan H; Ru J; Zhang Y; Wang Q; Li Y
    Microbiol Res; 2017 Jun; 199():89-97. PubMed ID: 28454713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Streptomyces-induced resistance against oak powdery mildew involves host plant responses in defense, photosynthesis, and secondary metabolism pathways.
    Kurth F; Mailänder S; Bönn M; Feldhahn L; Herrmann S; Große I; Buscot F; Schrey SD; Tarkka MT
    Mol Plant Microbe Interact; 2014 Sep; 27(9):891-900. PubMed ID: 24779643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The elicitin β-cryptogein's activity in tomato is mediated by jasmonic acid and ethylene signalling pathways independently of elicitin-sterol interactions.
    Starý T; Satková P; Piterková J; Mieslerová B; Luhová L; Mikulík J; Kašparovský T; Petřivalský M; Lochman J
    Planta; 2019 Mar; 249(3):739-749. PubMed ID: 30374914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.