BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 23302617)

  • 1. [Determination of resting energy expenditure in critically ill children experiencing mechanical ventilation].
    Dong HB; Yang YW; Wang Y; Hong L
    Zhonghua Er Ke Za Zhi; 2012 Nov; 50(11):847-50. PubMed ID: 23302617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy expenditure in critically ill children.
    Framson CM; LeLeiko NS; Dallal GE; Roubenoff R; Snelling LK; Dwyer JT
    Pediatr Crit Care Med; 2007 May; 8(3):264-7. PubMed ID: 17417117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Assessment of energy metabolism and nutritional supply in children with mechanical ventilation].
    Ji J; Qian S; Yan J
    Zhonghua Er Ke Za Zhi; 2016 Jan; 54(1):28-32. PubMed ID: 26791920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between inflammation and metabolic regulation of energy expenditure by GLP-1 in critically ill children.
    Zaher S; Branco R; Meyer R; White D; Ridout J; Pathan N
    Clin Nutr; 2021 Feb; 40(2):632-637. PubMed ID: 32646758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicted versus measured energy expenditure by continuous, online indirect calorimetry in ventilated, critically ill children during the early postinjury period.
    Vazquez Martinez JL; Martinez-Romillo PD; Diez Sebastian J; Ruza Tarrio F
    Pediatr Crit Care Med; 2004 Jan; 5(1):19-27. PubMed ID: 14697104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resting energy expenditure in severely burned children: analysis of agreement between indirect calorimetry and prediction equations using the Bland-Altman method.
    Suman OE; Mlcak RP; Chinkes DL; Herndon DN
    Burns; 2006 May; 32(3):335-42. PubMed ID: 16529869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resting Energy Expenditure Measured by Indirect Calorimetry in Infants and Young Children with Chronic Lung Disease.
    Jantarabenjakul W; Sanguanrungsirikul S; Sritippayawan S; Suteerojntakool O; Chomtho S
    J Med Assoc Thai; 2016 Dec; 99(12):1306-14. PubMed ID: 29952514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy Balance in Critically Ill Children With Severe Sepsis Using Indirect Calorimetry: A Prospective Cohort Study.
    Ismail J; Bansal A; Jayashree M; Nallasamy K; Attri SV
    J Pediatr Gastroenterol Nutr; 2019 Jun; 68(6):868-873. PubMed ID: 30889134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining the accuracy of predictive energy expenditure (PREE) equations in severely obese adolescents.
    Steinberg A; Manlhiot C; Cordeiro K; Chapman K; Pencharz PB; McCrindle BW; Hamilton JK
    Clin Nutr; 2017 Aug; 36(4):1158-1164. PubMed ID: 27612920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy expenditure in children with severe head injury: lack of agreement between measured and estimated energy expenditure.
    Havalad S; Quaid MA; Sapiega V
    Nutr Clin Pract; 2006 Apr; 21(2):175-81. PubMed ID: 16556928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can energy expenditure be predicted in critically ill children?
    Taylor RM; Cheeseman P; Preedy V; Baker AJ; Grimble G
    Pediatr Crit Care Med; 2003 Apr; 4(2):176-80. PubMed ID: 12749648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resting energy expenditure during mechanical ventilation and its relationship with the type of lesion.
    Raurich JM; Ibáñez J; Marsé P; Riera M; Homar X
    JPEN J Parenter Enteral Nutr; 2007; 31(1):58-62. PubMed ID: 17202442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can energy intake alter clinical and hospital outcomes in PICU?
    Larsen BMK; Beggs MR; Leong AY; Kang SH; Persad R; Garcia Guerra G
    Clin Nutr ESPEN; 2018 Apr; 24():41-46. PubMed ID: 29576361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is it necessary to measure resting energy expenditure in clinical practice in children?
    Shakur YA; Richards H; Pencharz PB
    J Pediatr; 2008 Mar; 152(3):437-9. PubMed ID: 18280856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of the Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition Recommendations for Caloric Provision to Critically Ill Obese Patients: A Pilot Study.
    Mogensen KM; Andrew BY; Corona JC; Robinson MK
    JPEN J Parenter Enteral Nutr; 2016 Jul; 40(5):713-21. PubMed ID: 25897016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resting energy expenditure in children in a pediatric intensive care unit: comparison of Harris-Benedict and Talbot predictions with indirect calorimetry values.
    Coss-Bu JA; Jefferson LS; Walding D; David Y; Smith EO; Klish WJ
    Am J Clin Nutr; 1998 Jan; 67(1):74-80. PubMed ID: 9440378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indirect calorimetry: a guide for optimizing nutritional support in the critically ill child.
    Sion-Sarid R; Cohen J; Houri Z; Singer P
    Nutrition; 2013 Sep; 29(9):1094-9. PubMed ID: 23927944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A critical view of the use of predictive energy equations for the identification of hypermetabolism in motor neuron disease: A pilot study.
    Roscoe S; Skinner E; Kabucho Kibirige E; Childs C; Weekes CE; Wootton S; Allen S; McDermott C; Stavroulakis T
    Clin Nutr ESPEN; 2023 Oct; 57():739-748. PubMed ID: 37739732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harris-Benedict Equation and Resting Energy Expenditure Estimates in Critically Ill Ventilator Patients.
    Picolo MF; Lago AF; Menegueti MG; Nicolini EA; Basile-Filho A; Nunes AA; Martins-Filho OA; Auxiliadora-Martins M
    Am J Crit Care; 2016 Jan; 25(1):e21-9. PubMed ID: 26724304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resting Energy Expenditure Early after Cardiac Surgery and Validity of Predictive Equations: A Prospective Observational Study.
    Ruan H; Tang Q; Yang Q; Hu F; Cai W
    Ann Nutr Metab; 2021; 77(5):271-278. PubMed ID: 34535579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.