BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 23302617)

  • 21. Accurate determination of energy needs in hospitalized patients.
    Boullata J; Williams J; Cottrell F; Hudson L; Compher C
    J Am Diet Assoc; 2007 Mar; 107(3):393-401. PubMed ID: 17324656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance of Predictive Equations Specifically Developed to Estimate Resting Energy Expenditure in Ventilated Critically Ill Children.
    Jotterand Chaparro C; Taffé P; Moullet C; Laure Depeyre J; Longchamp D; Perez MH; Cotting J
    J Pediatr; 2017 May; 184():220-226.e5. PubMed ID: 28108105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physical activity as a determinant of total energy expenditure in critically ill children.
    van der Kuip M; de Meer K; Westerterp KR; Gemke RJ
    Clin Nutr; 2007 Dec; 26(6):744-51. PubMed ID: 17949862
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy requirements of long-term ventilated COVID-19 patients with resolved SARS-CoV-2 infection.
    von Renesse J; von Bonin S; Held HC; Schneider R; Seifert AM; Seifert L; Spieth P; Weitz J; Welsch T; Meisterfeld R
    Clin Nutr ESPEN; 2021 Aug; 44():211-217. PubMed ID: 34330468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Optimal energy supply in different age groups of critically ill children on mechanical ventilation].
    Li XH; Ji J; Qian SY
    Zhonghua Er Ke Za Zhi; 2018 Jan; 56(1):39-42. PubMed ID: 29342996
    [No Abstract]   [Full Text] [Related]  

  • 26. Simple and accurate assessment of energy expenditure in ventilated paediatric intensive care patients.
    van der Kuip M; de Meer K; Oosterveld MJ; Lafeber HN; Gemke RJ
    Clin Nutr; 2004 Aug; 23(4):657-63. PubMed ID: 15297103
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The challenge of developing a new predictive formula to estimate energy requirements in ventilated critically ill children.
    Meyer R; Kulinskaya E; Briassoulis G; Taylor RM; Cooper M; Pathan N; Habibi P
    Nutr Clin Pract; 2012 Oct; 27(5):669-76. PubMed ID: 22677483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accuracy of abbreviated indirect calorimetry protocols for energy expenditure measurement in critically ill children.
    Smallwood CD; Mehta NM
    JPEN J Parenter Enteral Nutr; 2012 Nov; 36(6):693-9. PubMed ID: 22510266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prolonged progressive hypermetabolism during COVID-19 hospitalization undetected by common predictive energy equations.
    Niederer LE; Miller H; Haines KL; Molinger J; Whittle J; MacLeod DB; McClave SA; Wischmeyer PE
    Clin Nutr ESPEN; 2021 Oct; 45():341-350. PubMed ID: 34620338
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Challenges to nutrition therapy in the pediatric critically ill obese patient.
    Martinez EE; Ariagno K; Arriola A; Lara K; Mehta NM
    Nutr Clin Pract; 2015 Jun; 30(3):432-9. PubMed ID: 25667233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resting Energy Expenditure in Critically Ill Patients With Spontaneous Intracranial Hemorrhage.
    Koukiasa P; Bitzani M; Papaioannou V; Pnevmatikos I
    JPEN J Parenter Enteral Nutr; 2015 Nov; 39(8):917-21. PubMed ID: 24928226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of prediction equations for estimating resting energy expenditure in obese Chinese children.
    Chan DF; Li AM; Chan MH; So HK; Chan IH; Yin JA; Lam CW; Fok TF; Nelson EA
    Asia Pac J Clin Nutr; 2009; 18(2):251-6. PubMed ID: 19713185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicted vs measured energy expenditure in critically ill, underweight patients.
    Campbell CG; Zander E; Thorland W
    Nutr Clin Pract; 2005 Apr; 20(2):276-80. PubMed ID: 16207663
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resting energy expenditure in children and adolescents: agreement between calorimetry and prediction equations.
    Rodríguez G; Moreno LA; Sarría A; Fleta J; Bueno M
    Clin Nutr; 2002 Jun; 21(3):255-60. PubMed ID: 12127936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross-validation of prediction equations for resting energy expenditure in young, healthy children.
    Finan K; Larson DE; Goran MI
    J Am Diet Assoc; 1997 Feb; 97(2):140-5. PubMed ID: 9020240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy expenditure in 100 ventilated, critically ill children: improving the accuracy of predictive equations.
    White MS; Shepherd RW; McEniery JA
    Crit Care Med; 2000 Jul; 28(7):2307-12. PubMed ID: 10921557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Poor agreement between continuous measurements of energy expenditure and routinely used prediction equations in intensive care unit patients.
    Reid CL
    Clin Nutr; 2007 Oct; 26(5):649-57. PubMed ID: 17418917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predictive Equations Are Inaccurate in the Estimation of the Resting Energy Expenditure of Children With End-Stage Liver Disease.
    Carpenter A; Ng VL; Chapman K; Ling SC; Mouzaki M
    JPEN J Parenter Enteral Nutr; 2017 Mar; 41(3):507-511. PubMed ID: 26205222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of the energy requirements in mechanically ventilated critically ill elderly patients in different BMI groups using the Harris-Benedict equation.
    Hsu PH; Lee CH; Kuo LK; Kung YC; Chen WJ; Tzeng MS
    J Formos Med Assoc; 2018 Apr; 117(4):301-307. PubMed ID: 29336938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resting Energy Expenditure in the Critically Ill and Healthy Elderly-A Retrospective Matched Cohort Study.
    Lindner M; Geisler C; Rembarz K; Hummitzsch L; Radke DI; Schulte DM; Müller MJ; Bosy-Westphal A; Elke G
    Nutrients; 2023 Jan; 15(2):. PubMed ID: 36678174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.