These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 23302868)

  • 1. How the bat got its buzz.
    Ratcliffe JM; Elemans CP; Jakobsen L; Surlykke A
    Biol Lett; 2013 Apr; 9(2):20121031. PubMed ID: 23302868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variability of the approach phase of landing echolocating Greater Mouse-eared bats.
    Melcón ML; Schnitzler HU; Denzinger A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Jan; 195(1):69-77. PubMed ID: 18998148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine-tuned echolocation and capture-flight of Myotis capaccinii when facing different-sized insect and fish prey.
    Aizpurua O; Aihartza J; Alberdi A; Baagøe HJ; Garin I
    J Exp Biol; 2014 Sep; 217(Pt 18):3318-25. PubMed ID: 25013107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superfast muscles set maximum call rate in echolocating bats.
    Elemans CP; Mead AF; Jakobsen L; Ratcliffe JM
    Science; 2011 Sep; 333(6051):1885-8. PubMed ID: 21960635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast sensory-motor reactions in echolocating bats to sudden changes during the final buzz and prey intercept.
    Geberl C; Brinkløv S; Wiegrebe L; Surlykke A
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):4122-7. PubMed ID: 25775538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Echolocating bats emit terminal phase buzz calls while drinking on the wing.
    Griffiths SR
    Behav Processes; 2013 Sep; 98():58-60. PubMed ID: 23701945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight on how fishing bats discern prey and adjust their mechanic and sensorial features during the attack sequence.
    Aizpurua O; Alberdi A; Aihartza J; Garin I
    Sci Rep; 2015 Jul; 5():12392. PubMed ID: 26196094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of the echolocation beam during prey pursuit in aerial hawking bats.
    Jakobsen L; Olsen MN; Surlykke A
    Proc Natl Acad Sci U S A; 2015 Jun; 112(26):8118-23. PubMed ID: 26080398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Echolocation behaviour of Megaderma lyra during typical orientation situations and while hunting aerial prey: a field study.
    Schmidt S; Yapa W; Grunwald JE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 May; 197(5):403-12. PubMed ID: 20582420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency alternation and an offbeat rhythm indicate foraging behavior in the echolocating bat, Saccopteryx bilineata.
    Ratcliffe JM; Jakobsen L; Kalko EK; Surlykke A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 May; 197(5):413-23. PubMed ID: 21327333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Echolocation call structure and intensity in five species of insectivorous bats.
    Waters DA; Jones G
    J Exp Biol; 1995 Feb; 198(Pt 2):475-89. PubMed ID: 7699316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early erratic flight response of the lucerne moth to the quiet echolocation calls of distant bats.
    Nakano R; Mason AC
    PLoS One; 2018; 13(8):e0202679. PubMed ID: 30125318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The benefits of insect-swarm hunting to echolocating bats, and its influence on the evolution of bat echolocation signals.
    Boonman A; Fenton B; Yovel Y
    PLoS Comput Biol; 2019 Dec; 15(12):e1006873. PubMed ID: 31830029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Listening for bats: the hearing range of the bushcricket Phaneroptera falcata for bat echolocation calls measured in the field.
    Schul J; Matt F; von Helversen O
    Proc Biol Sci; 2000 Sep; 267(1454):1711-5. PubMed ID: 12233766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate-gleaning versus aerial-hawking: plasticity in the foraging and echolocation behaviour of the long-eared bat, Myotis evotis.
    Faure PA; Barclay RM
    J Comp Physiol A; 1994 May; 174(5):651-60. PubMed ID: 8006859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerial hawking and landing: approach behaviour in Natterer's bats, Myotis nattereri (Kuhl 1818).
    Melcón ML; Denzinger A; Schnitzler HU
    J Exp Biol; 2007 Dec; 210(Pt 24):4457-64. PubMed ID: 18055634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sonar strobe groups and buzzes are produced before powered flight is achieved in the juvenile big brown bat,
    Mayberry HW; Faure PA; Ratcliffe JM
    J Exp Biol; 2019 Oct; 222(Pt 20):. PubMed ID: 31548288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary escalation: the bat-moth arms race.
    Ter Hofstede HM; Ratcliffe JM
    J Exp Biol; 2016 Jun; 219(Pt 11):1589-602. PubMed ID: 27252453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breaking the trade-off: rainforest bats maximize bandwidth and repetition rate of echolocation calls as they approach prey.
    Schmieder DA; Kingston T; Hashim R; Siemers BM
    Biol Lett; 2010 Oct; 6(5):604-9. PubMed ID: 20356884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Echolocation call intensity in the aerial hawking bat Eptesicus bottae (Vespertilionidae) studied using stereo videogrammetry.
    Holderied MW; Korine C; Fenton MB; Parsons S; Robson S; Jones G
    J Exp Biol; 2005 Apr; 208(Pt 7):1321-7. PubMed ID: 15781892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.