These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 23303403)
1. Designing and developing S100P inhibitor 5-methyl cromolyn for pancreatic cancer therapy. Arumugam T; Ramachandran V; Sun D; Peng Z; Pal A; Maxwell DS; Bornmann WG; Logsdon CD Mol Cancer Ther; 2013 May; 12(5):654-62. PubMed ID: 23303403 [TBL] [Abstract][Full Text] [Related]
2. Effect of cromolyn on S100P interactions with RAGE and pancreatic cancer growth and invasion in mouse models. Arumugam T; Ramachandran V; Logsdon CD J Natl Cancer Inst; 2006 Dec; 98(24):1806-18. PubMed ID: 17179482 [TBL] [Abstract][Full Text] [Related]
4. Interaction between S100P and the anti-allergy drug cromolyn. Penumutchu SR; Chou RH; Yu C Biochem Biophys Res Commun; 2014 Nov; 454(3):404-9. PubMed ID: 25450399 [TBL] [Abstract][Full Text] [Related]
5. Melatonin overcomes gemcitabine resistance in pancreatic ductal adenocarcinoma by abrogating nuclear factor-κB activation. Ju HQ; Li H; Tian T; Lu YX; Bai L; Chen LZ; Sheng H; Mo HY; Zeng JB; Deng W; Chiao PJ; Xu RH J Pineal Res; 2016 Jan; 60(1):27-38. PubMed ID: 26445000 [TBL] [Abstract][Full Text] [Related]
6. In vivo antitumor effect of cromolyn in PEGylated liposomes for pancreatic cancer. Kim CE; Lim SK; Kim JS J Control Release; 2012 Jan; 157(2):190-5. PubMed ID: 21963773 [TBL] [Abstract][Full Text] [Related]
8. IL1 Receptor Antagonist Inhibits Pancreatic Cancer Growth by Abrogating NF-κB Activation. Zhuang Z; Ju HQ; Aguilar M; Gocho T; Li H; Iida T; Lee H; Fan X; Zhou H; Ling J; Li Z; Fu J; Wu M; Li M; Melisi D; Iwakura Y; Xu K; Fleming JB; Chiao PJ Clin Cancer Res; 2016 Mar; 22(6):1432-44. PubMed ID: 26500238 [TBL] [Abstract][Full Text] [Related]
9. S100P promotes pancreatic cancer growth, survival, and invasion. Arumugam T; Simeone DM; Van Golen K; Logsdon CD Clin Cancer Res; 2005 Aug; 11(15):5356-64. PubMed ID: 16061848 [TBL] [Abstract][Full Text] [Related]
10. Preclinical pharmacodynamic evaluation of a new Src/FOSL1 inhibitor, LY-1816, in pancreatic ductal adenocarcinoma. Yang W; Meng L; Chen K; Tian C; Peng B; Zhong L; Zhang C; Yang X; Zou J; Yang S; Li L Cancer Sci; 2019 Apr; 110(4):1408-1419. PubMed ID: 30618127 [TBL] [Abstract][Full Text] [Related]
11. Tumor-Specific Delivery of 5-Fluorouracil-Incorporated Epidermal Growth Factor Receptor-Targeted Aptamers as an Efficient Treatment in Pancreatic Ductal Adenocarcinoma Models. Mahajan UM; Li Q; Alnatsha A; Maas J; Orth M; Maier SH; Peterhansl J; Regel I; Sendler M; Wagh PR; Mishra N; Xue Y; Allawadhi P; Beyer G; Kühn JP; Marshall T; Appel B; Lämmerhirt F; Belka C; Müller S; Weiss FU; Lauber K; Lerch MM; Mayerle J Gastroenterology; 2021 Sep; 161(3):996-1010.e1. PubMed ID: 34097885 [TBL] [Abstract][Full Text] [Related]
12. Chloroquine Potentiates the Anticancer Effect of Pterostilbene on Pancreatic Cancer by Inhibiting Autophagy and Downregulating the RAGE/STAT3 Pathway. Chen RJ; Lyu YJ; Chen YY; Lee YC; Pan MH; Ho YS; Wang YJ Molecules; 2021 Nov; 26(21):. PubMed ID: 34771150 [TBL] [Abstract][Full Text] [Related]
13. Galectin-3 Mediates Tumor Cell-Stroma Interactions by Activating Pancreatic Stellate Cells to Produce Cytokines via Integrin Signaling. Zhao W; Ajani JA; Sushovan G; Ochi N; Hwang R; Hafley M; Johnson RL; Bresalier RS; Logsdon CD; Zhang Z; Song S Gastroenterology; 2018 Apr; 154(5):1524-1537.e6. PubMed ID: 29274868 [TBL] [Abstract][Full Text] [Related]
14. RAGE maintains high levels of NFκB and oncogenic Kras activity in pancreatic cancer. Azizan N; Suter MA; Liu Y; Logsdon CD Biochem Biophys Res Commun; 2017 Nov; 493(1):592-597. PubMed ID: 28867179 [TBL] [Abstract][Full Text] [Related]
15. Dysbindin promotes pancreatic ductal adenocarcinoma metastasis by activating NF-κB/MDM2 via miR-342-3p. Zhu D; Zheng S; Fang C; Guo X; Han D; Tang M; Fu H; Jiang M; Xie N; Nie Y; Yao X; Chen Y Cancer Lett; 2020 May; 477():107-121. PubMed ID: 32120026 [TBL] [Abstract][Full Text] [Related]
16. Activation of glucagon-like peptide-1 receptor inhibits growth and promotes apoptosis of human pancreatic cancer cells in a cAMP-dependent manner. Zhao H; Wei R; Wang L; Tian Q; Tao M; Ke J; Liu Y; Hou W; Zhang L; Yang J; Hong T Am J Physiol Endocrinol Metab; 2014 Jun; 306(12):E1431-41. PubMed ID: 24801389 [TBL] [Abstract][Full Text] [Related]
17. A novel small-molecule inhibitor of protein kinase D blocks pancreatic cancer growth in vitro and in vivo. Harikumar KB; Kunnumakkara AB; Ochi N; Tong Z; Deorukhkar A; Sung B; Kelland L; Jamieson S; Sutherland R; Raynham T; Charles M; Bagherzadeh A; Foxton C; Boakes A; Farooq M; Maru D; Diagaradjane P; Matsuo Y; Sinnett-Smith J; Gelovani J; Krishnan S; Aggarwal BB; Rozengurt E; Ireson CR; Guha S Mol Cancer Ther; 2010 May; 9(5):1136-46. PubMed ID: 20442301 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of Survival Pathways MAPK and NF-kB Triggers Apoptosis in Pancreatic Ductal Adenocarcinoma Cells via Suppression of Autophagy. Papademetrio DL; Lompardía SL; Simunovich T; Costantino S; Mihalez CY; Cavaliere V; Álvarez É Target Oncol; 2016 Apr; 11(2):183-95. PubMed ID: 26373299 [TBL] [Abstract][Full Text] [Related]
19. Kindlin-2 induced by TGF-β signaling promotes pancreatic ductal adenocarcinoma progression through downregulation of transcriptional factor HOXB9. Zhan J; Song J; Wang P; Chi X; Wang Y; Guo Y; Fang W; Zhang H Cancer Lett; 2015 May; 361(1):75-85. PubMed ID: 25724625 [TBL] [Abstract][Full Text] [Related]
20. Induction of cell death in pancreatic ductal adenocarcinoma by indirubin 3'-oxime and 5-methoxyindirubin 3'-oxime in vitro and in vivo. Sano M; Ichimaru Y; Kurita M; Hayashi E; Homma T; Saito H; Masuda S; Nemoto N; Hemmi A; Suzuki T; Miyairi S; Hao H Cancer Lett; 2017 Jul; 397():72-82. PubMed ID: 28347789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]