BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 23303585)

  • 1. A reversible redox strategy for SWCNT-based supercapacitors using a high-performance electrolyte.
    Yu H; Wu J; Lin J; Fan L; Huang M; Lin Y; Li Y; Yu F; Qiu Z
    Chemphyschem; 2013 Feb; 14(2):394-9. PubMed ID: 23303585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
    Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC
    Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring aligned-carbon-nanotubes@polyaniline arrays on household Al as supercapacitors.
    Huang F; Lou F; Chen D
    ChemSusChem; 2012 May; 5(5):888-95. PubMed ID: 22411903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High performance solid-state electric double layer capacitor from redox mediated gel polymer electrolyte and renewable tamarind fruit shell derived porous carbon.
    Senthilkumar ST; Selvan RK; Melo JS; Sanjeeviraja C
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10541-50. PubMed ID: 24164312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel SWCNT-polyoxometalate nanohybrid material as an electrode for electrochemical supercapacitors.
    Chen HY; Al-Oweini R; Friedl J; Lee CY; Li L; Kortz U; Stimming U; Srinivasan M
    Nanoscale; 2015 May; 7(17):7934-41. PubMed ID: 25866193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of temperature on the capacitance of carbon nanotube supercapacitors.
    Masarapu C; Zeng HF; Hung KH; Wei B
    ACS Nano; 2009 Aug; 3(8):2199-206. PubMed ID: 19583250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.
    Chen LF; Zhang XD; Liang HW; Kong M; Guan QF; Chen P; Wu ZY; Yu SH
    ACS Nano; 2012 Aug; 6(8):7092-102. PubMed ID: 22769051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed carbon nanotube actuators based on an oxidation/reduction reaction.
    Mukai K; Asaka K; Hata K; Otero TF; Oike H
    Chemistry; 2011 Sep; 17(39):10965-71. PubMed ID: 21826748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes.
    Jiang H; Li C; Sun T; Ma J
    Nanoscale; 2012 Feb; 4(3):807-12. PubMed ID: 22159343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.
    Kim B; Chung H; Kim W
    Nanotechnology; 2012 Apr; 23(15):155401. PubMed ID: 22437007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of redox molecules on the electronic conductance of single-walled carbon nanotube field-effect transistors: application to chemical and biological sensing.
    Boussaad S; Diner BA; Fan J
    J Am Chem Soc; 2008 Mar; 130(12):3780-7. PubMed ID: 18321094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Supercapacitors Based on the Synergetic Redox Effect between Electrode and Electrolyte.
    Zhang Y; Cui X; Zu L; Cai X; Liu Y; Wang X; Lian H
    Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.
    Kang YJ; Chung H; Han CH; Kim W
    Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes.
    Gao H; Xiao F; Ching CB; Duan H
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):7020-6. PubMed ID: 23167563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of SLS/MWCNTs/PANI capacitor electrodes in a physiological electrolyte and in serum.
    Ammam M; Fransaer J
    Chem Commun (Camb); 2012 Feb; 48(14):2036-8. PubMed ID: 22237451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible polyester cellulose paper supercapacitor with a gel electrolyte.
    Karthika P; Rajalakshmi N; Dhathathreyan KS
    Chemphyschem; 2013 Nov; 14(16):3822-6. PubMed ID: 24155269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic fusion of vertical graphene nanosheets and carbon nanotubes for high-performance supercapacitor electrodes.
    Seo DH; Yick S; Han ZJ; Fang JH; Ostrikov KK
    ChemSusChem; 2014 Aug; 7(8):2317-24. PubMed ID: 24828784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance.
    Mai LQ; Minhas-Khan A; Tian X; Hercule KM; Zhao YL; Lin X; Xu X
    Nat Commun; 2013; 4():2923. PubMed ID: 24327172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic effect of novel redox additives of p-nitroaniline and dimethylglyoxime for highly improving the supercapacitor performances.
    Nie YF; Wang Q; Chen XY; Zhang ZJ
    Phys Chem Chem Phys; 2016 Jan; 18(4):2718-29. PubMed ID: 26730443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of ascorbic acid levels in food samples by using an ionic liquid-carbon nanotube composite electrode.
    Ping J; Wang Y; Wu J; Ying Y; Ji F
    Food Chem; 2012 Nov; 135(2):362-7. PubMed ID: 22868100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.