These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23303585)

  • 41. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications.
    Han J; Zhang LL; Lee S; Oh J; Lee KS; Potts JR; Ji J; Zhao X; Ruoff RS; Park S
    ACS Nano; 2013 Jan; 7(1):19-26. PubMed ID: 23244292
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reproducible fabrication of robust, renewable vertically aligned multiwalled carbon nanotube/epoxy composite electrodes.
    Garrett DJ; Brooksby PA; Rawson FJ; Baronian KH; Downard AJ
    Anal Chem; 2011 Nov; 83(21):8347-51. PubMed ID: 21942378
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Template-free synthesis of renewable macroporous carbon via yeast cells for high-performance supercapacitor electrode materials.
    Sun H; He W; Zong C; Lu L
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2261-8. PubMed ID: 23452310
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Carbon-based electrochemical capacitors.
    Ghosh A; Lee YH
    ChemSusChem; 2012 Mar; 5(3):480-99. PubMed ID: 22389329
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of percolation on the capacitance of supercapacitor electrodes prepared from composites of manganese dioxide nanoplatelets and carbon nanotubes.
    Higgins TM; McAteer D; Coelho JC; Mendoza Sanchez B; Gholamvand Z; Moriarty G; McEvoy N; Berner NC; Duesberg GS; Nicolosi V; Coleman JN
    ACS Nano; 2014 Sep; 8(9):9567-79. PubMed ID: 25199042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low temperature water based electrolytes for MnO2/carbon supercapacitors.
    Roberts AJ; Danil de Namor AF; Slade RC
    Phys Chem Chem Phys; 2013 Mar; 15(10):3518-26. PubMed ID: 23377101
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication of a stretchable solid-state micro-supercapacitor array.
    Kim D; Shin G; Kang YJ; Kim W; Ha JS
    ACS Nano; 2013 Sep; 7(9):7975-82. PubMed ID: 23952841
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Free-standing 3D polyaniline-CNT/Ni-fiber hybrid electrodes for high-performance supercapacitors.
    Li Y; Fang Y; Liu H; Wu X; Lu Y
    Nanoscale; 2012 Apr; 4(9):2867-9. PubMed ID: 22499232
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-performance lithium-ion battery and symmetric supercapacitors based on FeCo₂O₄ nanoflakes electrodes.
    Mohamed SG; Chen CJ; Chen CK; Hu SF; Liu RS
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22701-8. PubMed ID: 25437918
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dioxythiophene-based polymer electrodes for supercapacitor modules.
    Liu DY; Reynolds JR
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3586-93. PubMed ID: 21090685
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices.
    Lee JA; Shin MK; Kim SH; Cho HU; Spinks GM; Wallace GG; Lima MD; Lepró X; Kozlov ME; Baughman RH; Kim SJ
    Nat Commun; 2013; 4():1970. PubMed ID: 23733169
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stretchable Supercapacitors Based on Carbon Nanotubes-Deposited Rubber Polymer Nanofibers Electrodes with High Tolerance against Strain.
    Yoon J; Lee J; Hur J
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30021963
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Highly Stretchable Supercapacitors Based on Aligned Carbon Nanotube/Molybdenum Disulfide Composites.
    Lv T; Yao Y; Li N; Chen T
    Angew Chem Int Ed Engl; 2016 Aug; 55(32):9191-5. PubMed ID: 27328623
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multifunctional g-C(3)N(4) nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties.
    Tahir M; Cao C; Mahmood N; Butt FK; Mahmood A; Idrees F; Hussain S; Tanveer M; Ali Z; Aslam I
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1258-65. PubMed ID: 24354285
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Single wall carbon nanotube supports for portable direct methanol fuel cells.
    Girishkumar G; Hall TD; Vinodgopal K; Kamat PV
    J Phys Chem B; 2006 Jan; 110(1):107-14. PubMed ID: 16471506
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nickel hydroxide-carbon nanotube nanocomposites as supercapacitor electrodes: crystallinity dependent performances.
    Jiang W; Zhai S; Wei L; Yuan Y; Yu D; Wang L; Wei J; Chen Y
    Nanotechnology; 2015 Aug; 26(31):314003. PubMed ID: 26186042
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Confining Redox Electrolytes in Functionalized Porous Carbon with Improved Energy Density for Supercapacitors.
    Yan L; Li D; Yan T; Chen G; Shi L; An Z; Zhang D
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42494-42502. PubMed ID: 30418743
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carbon nanotube systems to communicate with enzymes.
    Gooding JJ; Shapter JG
    Methods Mol Biol; 2005; 300():225-41. PubMed ID: 15657486
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effects of amine/nitro/hydroxyl groups on the benzene rings of redox additives on the electrochemical performance of carbon-based supercapacitors.
    Huang X; Wang Q; Chen XY; Zhang ZJ
    Phys Chem Chem Phys; 2016 Apr; 18(15):10438-52. PubMed ID: 27030290
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interconnected V2O5 nanoporous network for high-performance supercapacitors.
    Saravanakumar B; Purushothaman KK; Muralidharan G
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4484-90. PubMed ID: 22913341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.