These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 23303655)

  • 41. Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications.
    Escorihuela J; García-Bernabé A; Montero Á; Sahuquillo Ó; Giménez E; Compañ V
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 31013669
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Achieving 1060 mW cm
    Lin J; Wang P; Bin J; Wang L
    Small; 2024 Jul; 20(29):e2311767. PubMed ID: 38369969
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Double cross-linked 3D layered PBI proton exchange membranes for stable fuel cell performance above 200 °C.
    Zhang L; Liu M; Zhu D; Tang M; Zhu T; Gao C; Huang F; Xue L
    Nat Commun; 2024 Apr; 15(1):3409. PubMed ID: 38649702
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PAF-6 Doped with Phosphoric Acid through Alkaline Nitrogen Atoms Boosting High-Temperature Proton-Exchange Membranes for High Performance of Fuel Cells.
    Wang L; Wang Y; Li Z; Li T; Zhang R; Li J; Liu B; Lv Z; Cai W; Sun S; Hu W; Lu Y; Zhu G
    Adv Mater; 2023 Aug; 35(33):e2303535. PubMed ID: 37358077
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced surface functionality and microbial fuel cell performance of chitosan membranes through phosphorylation.
    Holder SL; Lee CH; Popuri SR; Zhuang MX
    Carbohydr Polym; 2016 Sep; 149():251-62. PubMed ID: 27261749
    [TBL] [Abstract][Full Text] [Related]  

  • 46. α-ZrP Nanoreinforcement Overcomes the Trade-Off between Phosphoric Acid Dopability and Thermomechanical Properties: Nanocomposite HTPEM with Stable Fuel Cell Performance.
    Rao SS; Hande VR; Sawant SM; Praveen S; Rath SK; Sudarshan K; Ratna D; Patri M
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37013-37025. PubMed ID: 31513381
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells?
    Melchior JP; Majer G; Kreuer KD
    Phys Chem Chem Phys; 2016 Dec; 19(1):601-612. PubMed ID: 27918027
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aniosotropically organized LDH on PVDF: a geometrically templated electrospun substrate for advanced anion conducting membranes.
    Sailaja GS; Zhang P; Anilkumar GM; Yamaguchi T
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6397-401. PubMed ID: 25782625
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Grafting of Amine End-Functionalized Side-Chain Polybenzimidazole Acid-Base Membrane with Enhanced Phosphoric Acid Retention Ability for High-Temperature Proton Exchange Membrane Fuel Cells.
    Liu G; Pan H; Zhao S; Wang Y; Tang H; Zhang H
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257253
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Poly(2,5-benzimidazole)-Grafted Graphene Oxide as an Effective Proton Conductor for Construction of Nanocomposite Proton Exchange Membrane.
    Qiu X; Ueda M; Hu H; Sui Y; Zhang X; Wang L
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):33049-33058. PubMed ID: 28872297
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phosphonate poly(vinylbenzyl chloride)-Modified Sulfonated poly(aryl ether nitrile) for Blend Proton Exchange Membranes: Enhanced Mechanical and Electrochemical Properties.
    Zhang Z; Liu H; Dong T; Deng Y; Li Y; Lu C; Jia W; Meng Z; Zhou M; Tang H
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571097
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest.
    Asensio JA; Sánchez EM; Gómez-Romero P
    Chem Soc Rev; 2010 Aug; 39(8):3210-39. PubMed ID: 20577662
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Copolymerization of divinylsilyl-11-silicotungstic acid with butyl acrylate and hexanediol diacrylate: synthesis of a highly proton-conductive membrane for fuel-cell applications.
    Horan JL; Genupur A; Ren H; Sikora BJ; Kuo MC; Meng F; Dec SF; Haugen GM; Yandrasits MA; Hamrock SJ; Frey MH; Herring AM
    ChemSusChem; 2009; 2(3):226-9. PubMed ID: 19170068
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers.
    Kim YS; Pivovar BS
    Annu Rev Chem Biomol Eng; 2010; 1():123-48. PubMed ID: 22432576
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Poly(ionic liquid)/OPBI Composite Membrane with Excellent Chemical Stability for High-Temperature Proton Exchange Membrane.
    Xiao Y; Chen H; Sun R; Zhang L; Xiang J; Cheng P; Han H; Wang S; Tang N
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571092
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Construction of Highly Conductive Cross-Linked Polybenzimidazole-Based Networks for High-Temperature Proton Exchange Membrane Fuel Cells.
    Li T; Yang J; Chen Q; Zhang H; Wang P; Hu W; Liu B
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903047
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biocompatibility of modified polyethersulfone membranes by blending an amphiphilic triblock co-polymer of poly(vinyl pyrrolidone)-b-poly(methyl methacrylate)-b-poly(vinyl pyrrolidone).
    Ran F; Nie S; Zhao W; Li J; Su B; Sun S; Zhao C
    Acta Biomater; 2011 Sep; 7(9):3370-81. PubMed ID: 21658478
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A microfluidic approach to synthesizing high-performance microfibers with tunable anhydrous proton conductivity.
    Hasani-Sadrabadi MM; VanDersarl JJ; Dashtimoghadam E; Bahlakeh G; Majedi FS; Mokarram N; Bertsch A; Jacob KI; Renaud P
    Lab Chip; 2013 Dec; 13(23):4549-53. PubMed ID: 24113644
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions.
    Escorihuela J; Sahuquillo Ó; García-Bernabé A; Giménez E; Compañ V
    Nanomaterials (Basel); 2018 Sep; 8(10):. PubMed ID: 30274316
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Advancement toward Polymer Electrolyte Membrane Fuel Cells at Elevated Temperatures.
    Zhang J; Aili D; Lu S; Li Q; Jiang SP
    Research (Wash D C); 2020; 2020():9089405. PubMed ID: 32566932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.