These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 2330367)

  • 1. Random mutagenesis used to probe the structure and function of Bacillus stearothermophilus alpha-amylase.
    Holm L; Koivula AK; Lehtovaara PM; Hemminki A; Knowles JK
    Protein Eng; 1990 Jan; 3(3):181-91. PubMed ID: 2330367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-terminal truncations of a thermostable Bacillus stearothermophilus alpha-amylase.
    Vihinen M; Peltonen T; Iitiä A; Suominen I; Mäntsälä P
    Protein Eng; 1994 Oct; 7(10):1255-9. PubMed ID: 7855141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural consequences of neopullulanase mutations.
    Lamminmäki U; Vihinen M
    Biochim Biophys Acta; 1996 Jul; 1295(2):195-200. PubMed ID: 8695646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of signal peptide mutations on processing of Bacillus stearothermophilus alpha-amylase in Escherichia coli.
    Suominen I; Meyer P; Tilgmann C; Glumoff T; Glumoff V; Käpylä J; Mäntsälä P
    Microbiology (Reading); 1995 Mar; 141 ( Pt 3)():649-54. PubMed ID: 7711904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introducing transglycosylation activity in a liquefying alpha-amylase.
    Saab-Rincón G; del-Río G; Santamaría RI; López-Munguía A; Soberón X
    FEBS Lett; 1999 Jun; 453(1-2):100-6. PubMed ID: 10403384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of mutation of an amino acid residue near the catalytic site on the activity of Bacillus stearothermophilus alpha-amylase.
    Takase K
    Eur J Biochem; 1993 Feb; 211(3):899-902. PubMed ID: 8436143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete nucleotide sequence of a thermophilic alpha-amylase gene: homology between prokaryotic and eukaryotic alpha-amylases at the active sites.
    Ihara H; Sasaki T; Tsuboi A; Yamagata H; Tsukagoshi N; Udaka S
    J Biochem; 1985 Jul; 98(1):95-103. PubMed ID: 3876333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the thermostability and enhancing the Ca(2+) binding of the maltohexaose-forming α-amylase from Bacillus stearothermophilus.
    Li Z; Duan X; Wu J
    J Biotechnol; 2016 Mar; 222():65-72. PubMed ID: 26869314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved residues of liquefying alpha-amylases are concentrated in the vicinity of active site.
    Vihinen M; Mäntsälä P
    Biochem Biophys Res Commun; 1990 Jan; 166(1):61-5. PubMed ID: 2302216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis of a thermostable alpha-amylase from Bacillus stearothermophilus: putative role of three conserved residues.
    Vihinen M; Ollikka P; Niskanen J; Meyer P; Suominen I; Karp M; Holm L; Knowles J; Mäntsälä P
    J Biochem; 1990 Feb; 107(2):267-72. PubMed ID: 1694530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of thermostable alpha-amylase from Bacillus licheniformis refined at 1.7 A resolution.
    Hwang KY; Song HK; Chang C; Lee J; Lee SY; Kim KK; Choe S; Sweet RM; Suh SW
    Mol Cells; 1997 Apr; 7(2):251-8. PubMed ID: 9163741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient production of Bacillus stearothermophilus alpha-amylase in Bacillus brevis by altering its signal peptide.
    Yamaguchi K; Ueda M; Udaka S
    Biosci Biotechnol Biochem; 1993 Aug; 57(8):1384-6. PubMed ID: 7764020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced extracellular expression of Bacillus stearothermophilus α-amylase in Bacillus subtilis through signal peptide optimization, chaperone overexpression and α-amylase mutant selection.
    Yao D; Su L; Li N; Wu J
    Microb Cell Fact; 2019 Apr; 18(1):69. PubMed ID: 30971250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis of the calcium-binding site of alpha-amylase of Bacillus licheniformis.
    Priyadharshini R; Gunasekaran P
    Biotechnol Lett; 2007 Oct; 29(10):1493-9. PubMed ID: 17598074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random point mutation analysis of the signal peptide cleavage area of Bacillus stearothermophilus alpha-amylase.
    Yamaguchi K; Ueda M; Kawanishi G; Udaka S
    Agric Biol Chem; 1991 Nov; 55(11):2875-6. PubMed ID: 1368751
    [No Abstract]   [Full Text] [Related]  

  • 16. Fusion of Bacillus stearothermophilus leucine aminopeptidase II with the raw-starch-binding domain of Bacillus sp. strain TS-23 alpha-amylase generates a chimeric enzyme with enhanced thermostability and catalytic activity.
    Hua YW; Chi MC; Lo HF; Hsu WH; Lin LL
    J Ind Microbiol Biotechnol; 2004 Jul; 31(6):273-7. PubMed ID: 15248089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning of a chromosomal alpha-amylase gene from Bacillus stearothermophilus.
    Jørgensen PL; Poulsen GB; Diderichsen B
    FEMS Microbiol Lett; 1991 Jan; 61(2-3):271-5. PubMed ID: 1903751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-function relationships in Gan42B, an intracellular GH42 β-galactosidase from Geobacillus stearothermophilus.
    Solomon HV; Tabachnikov O; Lansky S; Salama R; Feinberg H; Shoham Y; Shoham G
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2433-48. PubMed ID: 26627651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward the smallest active subdomain of a TIM-barrel fold: insights from a truncated α-amylase.
    Ben Ali M; Ghram M; Hmani H; Khemakhem B; Haser R; Bejar S
    Biochem Biophys Res Commun; 2011 Jul; 411(2):265-70. PubMed ID: 21741359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose.
    Cha HJ; Yoon HG; Kim YW; Lee HS; Kim JW; Kweon KS; Oh BH; Park KH
    Eur J Biochem; 1998 Apr; 253(1):251-62. PubMed ID: 9578484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.