These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 2330367)

  • 61. Refined molecular structure of pig pancreatic alpha-amylase at 2.1 A resolution.
    Larson SB; Greenwood A; Cascio D; Day J; McPherson A
    J Mol Biol; 1994 Feb; 235(5):1560-84. PubMed ID: 8107092
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Structural and biochemical features of acidic α-amylase of Bacillus acidicola.
    Sharma A; Satyanarayana T
    Int J Biol Macromol; 2013 Oct; 61():416-23. PubMed ID: 23954129
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structural analysis of a chimeric bacterial alpha-amylase. High-resolution analysis of native and ligand complexes.
    Brzozowski AM; Lawson DM; Turkenburg JP; Bisgaard-Frantzen H; Svendsen A; Borchert TV; Dauter Z; Wilson KS; Davies GJ
    Biochemistry; 2000 Aug; 39(31):9099-107. PubMed ID: 10924103
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A thermophilic alkalophilic α-amylase from Bacillus sp. AAH-31 shows a novel domain organization among glycoside hydrolase family 13 enzymes.
    Saburi W; Morimoto N; Mukai A; Kim DH; Takehana T; Koike S; Matsui H; Mori H
    Biosci Biotechnol Biochem; 2013; 77(9):1867-73. PubMed ID: 24018662
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Engineering of the alpha-amylase from Geobacillus stearothermophilus US100 for detergent incorporation.
    Khemakhem B; Ali MB; Aghajari N; Juy M; Haser R; Bejar S
    Biotechnol Bioeng; 2009 Feb; 102(2):380-9. PubMed ID: 18951544
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties.
    Karaivanova IM; Weigel P; Takahashi M; Fort C; Versavaud A; Van Duyne G; Charlier D; Hallet JN; Glansdorff N; Sakanyan V
    J Mol Biol; 1999 Aug; 291(4):843-55. PubMed ID: 10452892
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Importance of Trp139 in the product specificity of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04.
    Xie X; Qiu G; Zhang Z; Ban X; Gu Z; Li C; Hong Y; Cheng L; Li Z
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9433-9442. PubMed ID: 31676918
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Introducing transglycosylation activity in Bacillus licheniformis α-amylase by replacement of His235 with Glu.
    Tran PL; Cha HJ; Lee JS; Park SH; Woo EJ; Park KH
    Biochem Biophys Res Commun; 2014 Sep; 451(4):541-7. PubMed ID: 25117441
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Multiple amylase genes in two strains of Bacillus stearothermophilus.
    Sen S; Oriel P
    Gene; 1989 Mar; 76(1):137-44. PubMed ID: 2787266
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Sequence and structural investigation of a novel psychrophilic α-amylase from Glaciozyma antarctica PI12 for cold-adaptation analysis.
    Ramli AN; Azhar MA; Shamsir MS; Rabu A; Murad AM; Mahadi NM; Illias RM
    J Mol Model; 2013 Aug; 19(8):3369-83. PubMed ID: 23686283
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Protein-protein interaction revealed by NMR T(2) relaxation experiments: the lipoyl domain and E1 component of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus.
    Howard MJ; Chauhan HJ; Domingo GJ; Fuller C; Perham RN
    J Mol Biol; 2000 Jan; 295(4):1023-37. PubMed ID: 10656808
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Directed evolution of a bacterial alpha-amylase: toward enhanced pH-performance and higher specific activity.
    Bessler C; Schmitt J; Maurer KH; Schmid RD
    Protein Sci; 2003 Oct; 12(10):2141-9. PubMed ID: 14500872
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Purification, crystallization and preliminary X-ray crystallographic study of alpha-amylase from Bacillus stearothermophilus.
    Suvd D; Takase K; Fujimoto Z; Matsumura M; Mizuno H
    Acta Crystallogr D Biol Crystallogr; 2000 Feb; 56(Pt 2):200-2. PubMed ID: 10666605
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases.
    Tomazic SJ; Klibanov AM
    J Biol Chem; 1988 Mar; 263(7):3086-91. PubMed ID: 3257756
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biochemical characterization and identification of catalytic residues in alpha-glucuronidase from Bacillus stearothermophilus T-6.
    Zaide G; Shallom D; Shulami S; Zolotnitsky G; Golan G; Baasov T; Shoham G; Shoham Y
    Eur J Biochem; 2001 May; 268(10):3006-16. PubMed ID: 11358519
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Primary structure, expression, and site-directed mutagenesis of inorganic pyrophosphatase from Bacillus stearothermophilus.
    Satoh T; Shinoda H; Ishii K; Koyama M; Sakurai N; Kaji H; Hachimori A; Irie M; Samejima T
    J Biochem; 1999 Jan; 125(1):48-57. PubMed ID: 9880796
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Identification of glutamate residues important for catalytic activity or thermostability of a truncated Bacillus sp. strain TS-23 alpha-amylase by site-directed mutagenesis.
    Lin LL; Chen PJ; Liu JS; Wang WC; Lo HF
    Protein J; 2006 Apr; 25(3):232-9. PubMed ID: 16703471
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A double mutant of highly purified Geobacillus stearothermophilus lactate dehydrogenase recognises l-mandelic acid as a substrate.
    Binay B; Sessions RB; Karagüler NG
    Enzyme Microb Technol; 2013 May; 52(6-7):393-9. PubMed ID: 23608509
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Gene structure and quinol oxidase activity of a cytochrome bd-type oxidase from Bacillus stearothermophilus.
    Sakamoto J; Koga E; Mizuta T; Sato C; Noguchi S; Sone N
    Biochim Biophys Acta; 1999 Apr; 1411(1):147-58. PubMed ID: 10216161
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The 'pair of sugar tongs' site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity.
    Bozonnet S; Jensen MT; Nielsen MM; Aghajari N; Jensen MH; Kramhøft B; Willemoës M; Tranier S; Haser R; Svensson B
    FEBS J; 2007 Oct; 274(19):5055-67. PubMed ID: 17803687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.