BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23303828)

  • 21. Seasonal patterns for entomological measures of risk for exposure to Culex vectors and West Nile virus in relation to human disease cases in northeastern Colorado.
    Bolling BG; Barker CM; Moore CG; Pape WJ; Eisen L
    J Med Entomol; 2009 Nov; 46(6):1519-31. PubMed ID: 19960707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Effect of Fluctuating Incubation Temperatures on West Nile Virus Infection in
    McGregor BL; Kenney JL; Connelly CR
    Viruses; 2021 Sep; 13(9):. PubMed ID: 34578403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vector competence of two Indian populations of Culex quinquefasciatus (Diptera: Culicidae) mosquitoes to three West Nile virus strains.
    Sudeep AB; Mandar P; Ghodke YK; George RP; Gokhale MD
    J Vector Borne Dis; 2015 Sep; 52(3):185-92. PubMed ID: 26418647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative Vector Competence of North American
    Romo H; Papa A; Kading R; Clark R; Delorey M; Brault AC
    Am J Trop Med Hyg; 2018 Jun; 98(6):1863-1869. PubMed ID: 29637885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Does variation in Culex (Diptera: Culicidae) vector competence enable outbreaks of West Nile virus in California?
    Reisen WK; Barker CM; Fang Y; Martinez VM
    J Med Entomol; 2008 Nov; 45(6):1126-38. PubMed ID: 19058638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple amino acid changes at the first glycosylation motif in NS1 protein of West Nile virus are necessary for complete attenuation for mouse neuroinvasiveness.
    Whiteman MC; Wicker JA; Kinney RM; Huang CY; Solomon T; Barrett AD
    Vaccine; 2011 Dec; 29(52):9702-10. PubMed ID: 21945257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Co-circulation of West Nile virus and distinct insect-specific flaviviruses in Turkey.
    Ergünay K; Litzba N; Brinkmann A; Günay F; Sarıkaya Y; Kar S; Örsten S; Öter K; Domingo C; Erisoz Kasap Ö; Özkul A; Mitchell L; Nitsche A; Alten B; Linton YM
    Parasit Vectors; 2017 Mar; 10(1):149. PubMed ID: 28320443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mosquito saliva causes enhancement of West Nile virus infection in mice.
    Styer LM; Lim PY; Louie KL; Albright RG; Kramer LD; Bernard KA
    J Virol; 2011 Feb; 85(4):1517-27. PubMed ID: 21147918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fine-scale variation in vector host use and force of infection drive localized patterns of West Nile virus transmission.
    Hamer GL; Chaves LF; Anderson TK; Kitron UD; Brawn JD; Ruiz MO; Loss SR; Walker ED; Goldberg TL
    PLoS One; 2011; 6(8):e23767. PubMed ID: 21886821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reproductive biology and susceptibility of Florida Culex coronator to infection with West Nile virus.
    Alto BW; Connelly CR; O'Meara GF; Hickman D; Karr N
    Vector Borne Zoonotic Dis; 2014 Aug; 14(8):606-14. PubMed ID: 25072992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The insect-specific Palm Creek virus modulates West Nile virus infection in and transmission by Australian mosquitoes.
    Hall-Mendelin S; McLean BJ; Bielefeldt-Ohmann H; Hobson-Peters J; Hall RA; van den Hurk AF
    Parasit Vectors; 2016 Jul; 9(1):414. PubMed ID: 27457250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission.
    Reisen WK; Fang Y; Martinez VM
    J Med Entomol; 2005 May; 42(3):367-75. PubMed ID: 15962789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Culex pipiens and Stegomyia albopicta (= Aedes albopictus) populations as vectors for lineage 1 and 2 West Nile virus in Europe.
    Brustolin M; Talavera S; Santamaría C; Rivas R; Pujol N; Aranda C; Marquès E; Valle M; Verdún M; Pagès N; Busquets N
    Med Vet Entomol; 2016 Jun; 30(2):166-73. PubMed ID: 26890285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vector competence of Culiseta incidens and Culex thriambus for West Nile virus.
    Reisen WK; Fang Y; Martinez VM
    J Am Mosq Control Assoc; 2006 Dec; 22(4):662-5. PubMed ID: 17304934
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes.
    Kilpatrick AM; Meola MA; Moudy RM; Kramer LD
    PLoS Pathog; 2008 Jun; 4(6):e1000092. PubMed ID: 18584026
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of larval rearing temperature on immature development and West Nile virus vector competence of Culex tarsalis.
    Dodson BL; Kramer LD; Rasgon JL
    Parasit Vectors; 2012 Sep; 5():199. PubMed ID: 22967798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of overwintering on survival and vector competence of the West Nile virus vector Culex pipiens.
    Koenraadt CJM; Möhlmann TWR; Verhulst NO; Spitzen J; Vogels CBF
    Parasit Vectors; 2019 Mar; 12(1):147. PubMed ID: 30917854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of temperature on the transmission of west nile virus by Culex tarsalis (Diptera: Culicidae).
    Reisen WK; Fang Y; Martinez VM
    J Med Entomol; 2006 Mar; 43(2):309-17. PubMed ID: 16619616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999-2003.
    Andreadis TG; Anderson JF; Vossbrinck CR; Main AJ
    Vector Borne Zoonotic Dis; 2004; 4(4):360-78. PubMed ID: 15682518
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vector-host interactions governing epidemiology of West Nile virus in Southern California.
    Molaei G; Cummings RF; Su T; Armstrong PM; Williams GA; Cheng ML; Webb JP; Andreadis TG
    Am J Trop Med Hyg; 2010 Dec; 83(6):1269-82. PubMed ID: 21118934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.