BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 23303951)

  • 1. Characterization of sacral interneurons that mediate activation of locomotor pattern generators by sacrocaudal afferent input.
    Etlin A; Finkel E; Mor Y; O'Donovan MJ; Anglister L; Lev-Tov A
    J Neurosci; 2013 Jan; 33(2):734-47. PubMed ID: 23303951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shaping the Output of Lumbar Flexor Motoneurons by Sacral Neuronal Networks.
    Cherniak M; Anglister L; Lev-Tov A
    J Neurosci; 2017 Feb; 37(5):1294-1311. PubMed ID: 28025254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroanatomical basis for cholinergic modulation of locomotor networks by sacral relay neurons with ascending lumbar projections.
    Finkel E; Etlin A; Cherniak M; Mor Y; Lev-Tov A; Anglister L
    J Comp Neurol; 2014 Oct; 522(15):3437-55. PubMed ID: 24752570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural pathways between sacrocaudal afferents and lumbar pattern generators in neonatal rats.
    Strauss I; Lev-Tov A
    J Neurophysiol; 2003 Feb; 89(2):773-84. PubMed ID: 12574455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long and short multifunicular projections of sacral neurons are activated by sensory input to produce locomotor activity in the absence of supraspinal control.
    Etlin A; Blivis D; Ben-Zwi M; Lev-Tov A
    J Neurosci; 2010 Aug; 30(31):10324-36. PubMed ID: 20685976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sacral networks and neural pathways used to elicit lumbar motor rhythm in the rodent spinal cord.
    Cherniak M; Etlin A; Strauss I; Anglister L; Lev-Tov A
    Front Neural Circuits; 2014; 8():143. PubMed ID: 25520624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory-induced activation of pattern generators in the absence of supraspinal control.
    Lev-Tov A; Etlin A; Blivis D
    Ann N Y Acad Sci; 2010 Jun; 1198():54-62. PubMed ID: 20536920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of opioids on sacrocaudal afferent pathways and central pattern generators in the neonatal rat spinal cord.
    Blivis D; Mentis GZ; O'donovan MJ; Lev-Tov A
    J Neurophysiol; 2007 Apr; 97(4):2875-86. PubMed ID: 17287435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory modulation of locomotor-like membrane oscillations in Hb9-expressing interneurons.
    Hinckley CA; Wiesner EP; Mentis GZ; Titus DJ; Ziskind-Conhaim L
    J Neurophysiol; 2010 Jun; 103(6):3407-23. PubMed ID: 20393069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent sodium current contributes to induced voltage oscillations in locomotor-related hb9 interneurons in the mouse spinal cord.
    Ziskind-Conhaim L; Wu L; Wiesner EP
    J Neurophysiol; 2008 Oct; 100(4):2254-64. PubMed ID: 18667543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of the spinal network associated with generation of hindlimb locomotion in the neonatal rat and organization of its transverse coupling system.
    Kremer E; Lev-Tov A
    J Neurophysiol; 1997 Mar; 77(3):1155-70. PubMed ID: 9084588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The motor output of hindlimb innervating segments of the spinal cord is modulated by cholinergic activation of rostrally projecting sacral relay neurons.
    Etlin A; Finkel E; Cherniak M; Lev-Tov A; Anglister L
    J Mol Neurosci; 2014 Jul; 53(3):517-24. PubMed ID: 24973872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Firing properties of identified interneuron populations in the mammalian hindlimb central pattern generator.
    Butt SJ; Harris-Warrick RM; Kiehn O
    J Neurosci; 2002 Nov; 22(22):9961-71. PubMed ID: 12427853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhythmogenic networks are potently modulated by activation of muscarinic acetylcholine receptors in the rodent spinal cord.
    Matzner H; Zelinger M; Cherniak M; Anglister L; Lev-Tov A
    J Neurochem; 2021 Sep; 158(6):1263-1273. PubMed ID: 33735482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ascending pathways that mediate cholinergic modulation of lumbar motor activity.
    Anglister L; Cherniak M; Lev-Tov A
    J Neurochem; 2017 Aug; 142 Suppl 2():82-89. PubMed ID: 28791705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sacrocaudal afferents induce rhythmic efferent bursting in isolated spinal cords of neonatal rats.
    Lev-Tov A; Delvolvé I; Kremer E
    J Neurophysiol; 2000 Feb; 83(2):888-94. PubMed ID: 10669502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat.
    Gerasimenko Y; Preston C; Zhong H; Roy RR; Edgerton VR; Shah PK
    J Neurophysiol; 2019 Aug; 122(2):585-600. PubMed ID: 30943092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cervicolumbar coordination in mammalian quadrupedal locomotion: role of spinal thoracic circuitry and limb sensory inputs.
    Juvin L; Le Gal JP; Simmers J; Morin D
    J Neurosci; 2012 Jan; 32(3):953-65. PubMed ID: 22262893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotor rhythm evoked by ventrolateral funiculus stimulation in the neonatal rat spinal cord in vitro.
    Magnuson DS; Trinder TC
    J Neurophysiol; 1997 Jan; 77(1):200-6. PubMed ID: 9120561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serotonin controls initiation of locomotion and afferent modulation of coordination via 5-HT
    Cabaj AM; Majczyński H; Couto E; Gardiner PF; Stecina K; Sławińska U; Jordan LM
    J Physiol; 2017 Jan; 595(1):301-320. PubMed ID: 27393215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.