These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23304326)

  • 21. Multimodal learning for temporal relation extraction in clinical texts.
    Knez T; Žitnik S
    J Am Med Inform Assoc; 2024 May; 31(6):1380-1387. PubMed ID: 38531680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MedTime: a temporal information extraction system for clinical narratives.
    Lin YK; Chen H; Brown RA
    J Biomed Inform; 2013 Dec; 46 Suppl():S20-S28. PubMed ID: 23911344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications.
    Savova GK; Masanz JJ; Ogren PV; Zheng J; Sohn S; Kipper-Schuler KC; Chute CG
    J Am Med Inform Assoc; 2010; 17(5):507-13. PubMed ID: 20819853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records.
    Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M
    Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leveraging rich annotations to improve learning of medical concepts from clinical free text.
    Yu S; Farooq F; Krishnapuram B; Rao B
    AMIA Annu Symp Proc; 2011; 2011():1603-11. PubMed ID: 22195226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extracting medications and associated adverse drug events using a natural language processing system combining knowledge base and deep learning.
    Chen L; Gu Y; Ji X; Sun Z; Li H; Gao Y; Huang Y
    J Am Med Inform Assoc; 2020 Jan; 27(1):56-64. PubMed ID: 31591641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patient Cohort Retrieval using Transformer Language Models.
    Soni S; Roberts K
    AMIA Annu Symp Proc; 2020; 2020():1150-1159. PubMed ID: 33936491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ontology-based clinical information extraction from physician's free-text notes.
    Yehia E; Boshnak H; AbdelGaber S; Abdo A; Elzanfaly DS
    J Biomed Inform; 2019 Oct; 98():103276. PubMed ID: 31473365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep generative learning for automated EHR diagnosis of traditional Chinese medicine.
    Liang Z; Liu J; Ou A; Zhang H; Li Z; Huang JX
    Comput Methods Programs Biomed; 2019 Jun; 174():17-23. PubMed ID: 29801696
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Eventual situations for timeline extraction from clinical reports.
    Grouin C; Grabar N; Hamon T; Rosset S; Tannier X; Zweigenbaum P
    J Am Med Inform Assoc; 2013; 20(5):820-7. PubMed ID: 23571851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Family history information extraction via deep joint learning.
    Shi X; Jiang D; Huang Y; Wang X; Chen Q; Yan J; Tang B
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 10):277. PubMed ID: 31881967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Medication information extraction with linguistic pattern matching and semantic rules.
    Spasic I; Sarafraz F; Keane JA; Nenadic G
    J Am Med Inform Assoc; 2010; 17(5):532-5. PubMed ID: 20819858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extracting temporal constraints from clinical research eligibility criteria using conditional random fields.
    Luo Z; Johnson SB; Lai AM; Weng C
    AMIA Annu Symp Proc; 2011; 2011():843-52. PubMed ID: 22195142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extracting COVID-19 diagnoses and symptoms from clinical text: A new annotated corpus and neural event extraction framework.
    Lybarger K; Ostendorf M; Thompson M; Yetisgen M
    J Biomed Inform; 2021 May; 117():103761. PubMed ID: 33781918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CERC: an interactive content extraction, recognition, and construction tool for clinical and biomedical text.
    Lee EK; Uppal K
    BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 14):306. PubMed ID: 33323109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Minimalistic Approach to Coreference Resolution in Lithuanian Medical Records.
    Žitkus V; Butkienė R; Butleris R; Maskeliūnas R; Damaševičius R; Woźniak M
    Comput Math Methods Med; 2019; 2019():9079840. PubMed ID: 31015858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extracting important information from Chinese Operation Notes with natural language processing methods.
    Wang H; Zhang W; Zeng Q; Li Z; Feng K; Liu L
    J Biomed Inform; 2014 Apr; 48():130-6. PubMed ID: 24486562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Task definition, annotated dataset, and supervised natural language processing models for symptom extraction from unstructured clinical notes.
    Steinkamp JM; Bala W; Sharma A; Kantrowitz JJ
    J Biomed Inform; 2020 Feb; 102():103354. PubMed ID: 31838210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Information Extraction Algorithm for Detecting Adverse Events in Neurosurgery Using Documents Written in a Natural Rich-in-Morphology Language.
    Danilov G; Shifrin M; Strunina U; Pronkina T; Potapov A
    Stud Health Technol Inform; 2019 Jul; 262():194-197. PubMed ID: 31349300
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A deep learning model incorporating part of speech and self-matching attention for named entity recognition of Chinese electronic medical records.
    Cai X; Dong S; Hu J
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):65. PubMed ID: 30961622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.