BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 23304375)

  • 1. A comparative study of current Clinical Natural Language Processing systems on handling abbreviations in discharge summaries.
    Wu Y; Denny JC; Rosenbloom ST; Miller RA; Giuse DA; Xu H
    AMIA Annu Symp Proc; 2012; 2012():997-1003. PubMed ID: 23304375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A long journey to short abbreviations: developing an open-source framework for clinical abbreviation recognition and disambiguation (CARD).
    Wu Y; Denny JC; Trent Rosenbloom S; Miller RA; Giuse DA; Wang L; Blanquicett C; Soysal E; Xu J; Xu H
    J Am Med Inform Assoc; 2017 Apr; 24(e1):e79-e86. PubMed ID: 27539197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting abbreviations in discharge summaries using machine learning methods.
    Wu Y; Rosenbloom ST; Denny JC; Miller RA; Mani S; Giuse DA; Xu H
    AMIA Annu Symp Proc; 2011; 2011():1541-9. PubMed ID: 22195219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ensembles of natural language processing systems for portable phenotyping solutions.
    Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C
    J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining corpus-derived sense profiles with estimated frequency information to disambiguate clinical abbreviations.
    Xu H; Stetson PD; Friedman C
    AMIA Annu Symp Proc; 2012; 2012():1004-13. PubMed ID: 23304376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Preliminary Study of Clinical Abbreviation Disambiguation in Real Time.
    Wu Y; Denny JC; Rosenbloom ST; Miller RA; Giuse DA; Song M; Xu H
    Appl Clin Inform; 2015; 6(2):364-74. PubMed ID: 26171081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 2019 National Natural language processing (NLP) Clinical Challenges (n2c2)/Open Health NLP (OHNLP) shared task on clinical concept normalization for clinical records.
    Henry S; Wang Y; Shen F; Uzuner O
    J Am Med Inform Assoc; 2020 Oct; 27(10):1529-1537. PubMed ID: 32968800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of abbreviations in clinical notes.
    Xu H; Stetson PD; Friedman C
    AMIA Annu Symp Proc; 2007 Oct; 2007():821-5. PubMed ID: 18693951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated disambiguation of acronyms and abbreviations in clinical texts: window and training size considerations.
    Moon S; Pakhomov S; Melton GB
    AMIA Annu Symp Proc; 2012; 2012():1310-9. PubMed ID: 23304410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards Comprehensive Clinical Abbreviation Disambiguation Using Machine-Labeled Training Data.
    Finley GP; Pakhomov SV; McEwan R; Melton GB
    AMIA Annu Symp Proc; 2016; 2016():560-569. PubMed ID: 28269852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating existing natural language processing tools for medication extraction from discharge summaries.
    Doan S; Bastarache L; Klimkowski S; Denny JC; Xu H
    J Am Med Inform Assoc; 2010; 17(5):528-31. PubMed ID: 20819857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of medication information from discharge summaries using ensembles of classifiers.
    Doan S; Collier N; Xu H; Pham HD; Tu MP
    BMC Med Inform Decis Mak; 2012 May; 12():36. PubMed ID: 22564405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A knowledge model for the interpretation and visualization of NLP-parsed discharged summaries.
    Krauthammer M; Hripcsak G
    Proc AMIA Symp; 2001; ():339-43. PubMed ID: 11825207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abbreviation definition identification based on automatic precision estimates.
    Sohn S; Comeau DC; Kim W; Wilbur WJ
    BMC Bioinformatics; 2008 Sep; 9():402. PubMed ID: 18817555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries.
    Jiang M; Chen Y; Liu M; Rosenbloom ST; Mani S; Denny JC; Xu H
    J Am Med Inform Assoc; 2011; 18(5):601-6. PubMed ID: 21508414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural language processing (NLP) tools in extracting biomedical concepts from research articles: a case study on autism spectrum disorder.
    Peng J; Zhao M; Havrilla J; Liu C; Weng C; Guthrie W; Schultz R; Wang K; Zhou Y
    BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 11):322. PubMed ID: 33380331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated detection of adverse events using natural language processing of discharge summaries.
    Melton GB; Hripcsak G
    J Am Med Inform Assoc; 2005; 12(4):448-57. PubMed ID: 15802475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting adverse drug reactions in discharge summaries of electronic medical records using Readpeer.
    Tang Y; Yang J; Ang PS; Dorajoo SR; Foo B; Soh S; Tan SH; Tham MY; Ye Q; Shek L; Sung C; Tung A
    Int J Med Inform; 2019 Aug; 128():62-70. PubMed ID: 31160013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An easily implemented method for abbreviation expansion for the medical domain in Japanese text. A preliminary study.
    Shinohara EY; Aramaki E; Imai T; Miura Y; Tonoike M; Ohkuma T; Masuichi H; Ohe K
    Methods Inf Med; 2013; 52(1):51-61. PubMed ID: 23223786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep database of medical abbreviations and acronyms for natural language processing.
    Grossman Liu L; Grossman RH; Mitchell EG; Weng C; Natarajan K; Hripcsak G; Vawdrey DK
    Sci Data; 2021 Jun; 8(1):149. PubMed ID: 34078918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.