These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23304431)

  • 1. Wheat production in Bangladesh: its future in the light of global warming.
    Hossain A; Teixeira da Silva JA
    AoB Plants; 2013; 5():pls042. PubMed ID: 23304431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can Bangladesh produce enough cereals to meet future demand?
    Timsina J; Wolf J; Guilpart N; van Bussel LGJ; Grassini P; van Wart J; Hossain A; Rashid H; Islam S; van Ittersum MK
    Agric Syst; 2018 Jun; 163():36-44. PubMed ID: 29861535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yield trends and variabilities explained by climatic change in coastal and non-coastal areas of Bangladesh.
    Hasan MK; Kumar L
    Sci Total Environ; 2021 Nov; 795():148814. PubMed ID: 34237533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance.
    Mills G; Sharps K; Simpson D; Pleijel H; Frei M; Burkey K; Emberson L; Uddling J; Broberg M; Feng Z; Kobayashi K; Agrawal M
    Glob Chang Biol; 2018 Oct; 24(10):4869-4893. PubMed ID: 30084165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agricultural Adaptation to Global Warming in the Tibetan Plateau.
    Song Y; Wang C; Linderholm HW; Tian J; Shi Y; Xu J; Liu Y
    Int J Environ Res Public Health; 2019 Sep; 16(19):. PubMed ID: 31575015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agronomic improvements can make future cereal systems in South Asia far more productive and result in a lower environmental footprint.
    Ladha JK; Rao AN; Raman AK; Padre AT; Dobermann A; Gathala M; Kumar V; Saharawat Y; Sharma S; Piepho HP; Alam MM; Liak R; Rajendran R; Reddy CK; Parsad R; Sharma PC; Singh SS; Saha A; Noor S
    Glob Chang Biol; 2016 Mar; 22(3):1054-74. PubMed ID: 26527502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wheat Blast in Bangladesh: The Current Situation and Future Impacts.
    Islam MT; Kim KH; Choi J
    Plant Pathol J; 2019 Feb; 35(1):1-10. PubMed ID: 30828274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in grain protein and amino acids composition of wheat and rice under short-term increased [CO
    Wang J; Hasegawa T; Li L; Lam SK; Zhang X; Liu X; Pan G
    New Phytol; 2019 Apr; 222(2):726-734. PubMed ID: 30586149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-driven harvest decisions amplify US winter wheat loss under climate warming.
    Zhu P; Burney J
    Glob Chang Biol; 2021 Feb; 27(3):550-562. PubMed ID: 33145917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Projective analysis of staple food crop productivity in adaptation to future climate change in China.
    Zhang Q; Zhang W; Li T; Sun W; Yu Y; Wang G
    Int J Biometeorol; 2017 Aug; 61(8):1445-1460. PubMed ID: 28247124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Velocity of temperature and flowering time in wheat - assisting breeders to keep pace with climate change.
    Zheng B; Chenu K; Chapman SC
    Glob Chang Biol; 2016 Feb; 22(2):921-33. PubMed ID: 26432666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Food security in the face of climate change, population growth, and resource constraints: implications for Bangladesh.
    Faisal IM; Parveen S
    Environ Manage; 2004 Oct; 34(4):487-98. PubMed ID: 15633033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing.
    Duncan JM; Dash J; Atkinson PM
    Glob Chang Biol; 2015 Apr; 21(4):1541-51. PubMed ID: 24930864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of global major crop yields to climate variables: A non-parametric elasticity analysis.
    Liu D; Mishra AK; Ray DK
    Sci Total Environ; 2020 Dec; 748():141431. PubMed ID: 32805570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Economic Impact of Exchanging Breeding Material: Assessing Winter Wheat Production in Germany.
    Lüttringhaus S; Gornott C; Wittkop B; Noleppa S; Lotze-Campen H
    Front Plant Sci; 2020; 11():601013. PubMed ID: 33424900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change.
    Olesen JE; Børgesen CD; Elsgaard L; Palosuo T; Rötter RP; Skjelvåg AO; Peltonen-Sainio P; Börjesson T; Trnka M; Ewert F; Siebert S; Brisson N; Eitzinger J; van Asselt ED; Oberforster M; van der Fels-Klerx HJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1527-42. PubMed ID: 22934894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Downscaling model in agriculture in Western Uzbekistan climatic trends and growth potential along field crops physiological tolerance to low and high temperatures.
    Schlubach J
    Heliyon; 2021 May; 7(5):e07028. PubMed ID: 34113727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling ENSO impact on rice production in the Mekong River Delta.
    Tan Yen B; Quyen NH; Duong TH; Van Kham D; Amjath-Babu TS; Sebastian L
    PLoS One; 2019; 14(10):e0223884. PubMed ID: 31639159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remote Sensing-Based Quantification of the Impact of Flash Flooding on the Rice Production: A Case Study over Northeastern Bangladesh.
    Ahmed MR; Rahaman KR; Kok A; Hassan QK
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29036896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased greenhouse gas emissions intensity of major croplands in China: Implications for food security and climate change mitigation.
    Zhang J; Tian H; Shi H; Zhang J; Wang X; Pan S; Yang J
    Glob Chang Biol; 2020 Nov; 26(11):6116-6133. PubMed ID: 32697859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.