These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 23305140)
1. 3D QSAR and docking study of gliptin derivatives as DPP-IV inhibitors. Agrawal R; Jain P; Dikshit SN; Bahare RS Comb Chem High Throughput Screen; 2013 May; 16(4):249-73. PubMed ID: 23305140 [TBL] [Abstract][Full Text] [Related]
2. 3D QSAR and docking studies of various amido and benzyl-substituted 3-amino-4-(2-cyanopyrrolidide)pyrrolidinyl analogs as DPP-IV inhibitors. Agrawal R; Jain P; Dikshit SN; Jain S Protein Pept Lett; 2013 Sep; 20(9):1066-78. PubMed ID: 23607811 [TBL] [Abstract][Full Text] [Related]
3. 3D QSAR of aminophenyl benzamide derivatives as histone deacetylase inhibitors. Mahipal ; Tanwar OP; Karthikeyan C; Moorthy NS; Trivedi P Med Chem; 2010 Sep; 6(5):277-85. PubMed ID: 20977417 [TBL] [Abstract][Full Text] [Related]
4. Discovery of Novel DPP-IV Inhibitors as Potential Candidates for the Treatment of Type 2 Musoev A; Numonov S; You Z; Gao H Molecules; 2019 Aug; 24(16):. PubMed ID: 31394858 [TBL] [Abstract][Full Text] [Related]
5. Ligand-based pharmacophore detection, screening of potential gliptins and docking studies to get effective antidiabetic agents. Agrawal R; Jain P; Dikshit SN Comb Chem High Throughput Screen; 2012 Dec; 15(10):849-76. PubMed ID: 23140189 [TBL] [Abstract][Full Text] [Related]
6. Effects of Different Dietary Flavonoids on Dipeptidyl Peptidase-IV Activity and Expression: Insights into Structure-Activity Relationship. Gao F; Fu Y; Yi J; Gao A; Jia Y; Cai S J Agric Food Chem; 2020 Oct; 68(43):12141-12151. PubMed ID: 33063510 [TBL] [Abstract][Full Text] [Related]
7. Hybrid docking-QSAR studies of DPP-IV inhibition activities of a series of aminomethyl-piperidones. Amini Z; Fatemi MH; Gharaghani S Comput Biol Chem; 2016 Oct; 64():335-345. PubMed ID: 27570070 [TBL] [Abstract][Full Text] [Related]
8. Discovery of novel xanthine compounds targeting DPP-IV and GPR119 as anti-diabetic agents. Li G; Huan Y; Yuan B; Wang J; Jiang Q; Lin Z; Shen Z; Huang H Eur J Med Chem; 2016 Nov; 124():103-116. PubMed ID: 27560285 [TBL] [Abstract][Full Text] [Related]
9. Molecular docking and 3D-QSAR studies on beta-phenylalanine derivatives as dipeptidyl peptidase IV inhibitors. Jiang YK J Mol Model; 2010 Jul; 16(7):1239-49. PubMed ID: 20069322 [TBL] [Abstract][Full Text] [Related]
10. Exploration of DPP-IV inhibitors with a novel scaffold by multistep in silico screening. Uchida T; Wakasugi M; Kitamura T; Yamamoto T; Asakura M; Fujiwara R; Itoh T; Fujii H; Hirono S J Mol Graph Model; 2018 Jan; 79():254-263. PubMed ID: 29274572 [TBL] [Abstract][Full Text] [Related]
11. In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors. Nongonierma AB; Mooney C; Shields DC; FitzGerald RJ Peptides; 2014 Jul; 57():43-51. PubMed ID: 24793774 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and biological evaluation of xanthine derivatives on dipeptidyl peptidase 4. Lin K; Cai Z; Wang F; Zhang W; Zhou W Chem Pharm Bull (Tokyo); 2013; 61(4):477-82. PubMed ID: 23358258 [TBL] [Abstract][Full Text] [Related]
14. Pharmacophore generation and atom-based 3D-QSAR of novel quinoline-3-carbonitrile derivatives as Tpl2 kinase inhibitors. Teli MK; Rajanikant GK J Enzyme Inhib Med Chem; 2012 Aug; 27(4):558-70. PubMed ID: 21851209 [TBL] [Abstract][Full Text] [Related]
15. DPP-IV Inhibitory Phenanthridines: Ligand, Structure-Based Design and Synthesis. Khalaf RA; Masalha D; Sabbah D Curr Comput Aided Drug Des; 2020; 16(3):295-307. PubMed ID: 30526469 [TBL] [Abstract][Full Text] [Related]
16. Pharmacophore generation, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on benzamide analogues as FtsZ inhibitors. Tripathy S; Azam MA; Jupudi S; Sahu SK J Biomol Struct Dyn; 2018 Sep; 36(12):3218-3230. PubMed ID: 28938860 [TBL] [Abstract][Full Text] [Related]
17. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation. Meduru H; Wang YT; Tsai JJ; Chen YC Int J Mol Sci; 2016 Jun; 17(6):. PubMed ID: 27304951 [TBL] [Abstract][Full Text] [Related]
18. A combination of pharmacophore modeling, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on PDE4 enzyme inhibitors. Tripuraneni NS; Azam MA J Biomol Struct Dyn; 2016 Nov; 34(11):2481-92. PubMed ID: 26587754 [TBL] [Abstract][Full Text] [Related]
19. Synthesis, structure-activity relationship, and pharmacophore modeling studies of pyrazole-3-carbohydrazone derivatives as dipeptidyl peptidase IV inhibitors. Wu D; Jin F; Lu W; Zhu J; Li C; Wang W; Tang Y; Jiang H; Huang J; Liu G; Li J Chem Biol Drug Des; 2012 Jun; 79(6):897-906. PubMed ID: 22381062 [TBL] [Abstract][Full Text] [Related]
20. Scaffold-based design of xanthine as highly potent inhibitors of DPP-IV for improving glucose homeostasis in DIO mice. Ran Y; Pei H; Xie C; Ma L; Wu Y; Lei K; Shao M; Tang M; Xiang M; Peng A; Wei Y; Chen L Mol Divers; 2015 May; 19(2):333-46. PubMed ID: 25672287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]