These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23305165)

  • 1. Microtextured substrates and microparticles used as in situ lenses for on-chip immunofluorescence amplification.
    Yang H; Gijs MA
    Anal Chem; 2013 Feb; 85(4):2064-71. PubMed ID: 23305165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated microfluidic bioprocessor for solid phase capture immunoassays.
    Kim J; Jensen EC; Megens M; Boser B; Mathies RA
    Lab Chip; 2011 Sep; 11(18):3106-12. PubMed ID: 21804972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of CdTe quantum dot fluorescent microspheres in fluoro-immunoassays and a microfluidic chip system.
    Ma Q; Wang X; Li Y; Su X; Jin Q
    Luminescence; 2007; 22(5):438-45. PubMed ID: 17610307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibody immobilization on to polystyrene substrate--on-chip immunoassay for horse IgG based on fluorescence.
    Darain F; Gan KL; Tjin SC
    Biomed Microdevices; 2009 Jun; 11(3):653-61. PubMed ID: 19130240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bead-based immunoassays using a micro-chip flow cytometer.
    Holmes D; She JK; Roach PL; Morgan H
    Lab Chip; 2007 Aug; 7(8):1048-56. PubMed ID: 17653348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive detection of disease biomarkers using an immuno-wall device with enzymatic amplification.
    Nishiyama K; Kasama T; Nakamata S; Ishikawa K; Onoshima D; Yukawa H; Maeki M; Ishida A; Tani H; Baba Y; Tokeshi M
    Analyst; 2019 Aug; 144(15):4589-4595. PubMed ID: 31237262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex detection platform for tumor markers and glucose in serum based on a microfluidic microparticle array.
    Zhu Q; Trau D
    Anal Chim Acta; 2012 Nov; 751():146-54. PubMed ID: 23084064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transposing Lateral Flow Immunoassays to Capillary-Driven Microfluidics Using Self-Coalescence Modules and Capillary-Assembled Receptor Carriers.
    Hemmig E; Temiz Y; Gökçe O; Lovchik RD; Delamarche E
    Anal Chem; 2020 Jan; 92(1):940-946. PubMed ID: 31860276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A capillary flow-driven microfluidic system for microparticle-labeled immunoassays.
    Khodayari Bavil A; Kim J
    Analyst; 2018 Jul; 143(14):3335-3342. PubMed ID: 29878004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of tosyl-activated magnetic and nonmagnetic monodisperse microspheres for use in microfluic-based ferritin immunoassay.
    Reymond F; Vollet C; Plichta Z; Horák D
    Biotechnol Prog; 2013; 29(2):532-42. PubMed ID: 23296798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip immunoassay using electrostatic assembly of streptavidin-coated bead micropatterns.
    Sivagnanam V; Song B; Vandevyver C; Gijs MA
    Anal Chem; 2009 Aug; 81(15):6509-15. PubMed ID: 19572553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. At-line bioprocess monitoring by immunoassay with rotationally controlled serial siphoning and integrated supercritical angle fluorescence optics.
    Nwankire CE; Donohoe GG; Zhang X; Siegrist J; Somers M; Kurzbuch D; Monaghan R; Kitsara M; Burger R; Hearty S; Murrell J; Martin C; Rook M; Barrett L; Daniels S; McDonagh C; O'Kennedy R; Ducrée J
    Anal Chim Acta; 2013 Jun; 781():54-62. PubMed ID: 23684465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High sensitivity immunoassays using particulate fluorescent labels.
    Hall M; Kazakova I; Yao YM
    Anal Biochem; 1999 Aug; 272(2):165-70. PubMed ID: 10415085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid detection of Mycoplasma pneumonia in a microfluidic device using immunoagglutination assay and static light scattering.
    Kim K; Jung HS; Song JY; Lee MR; Kim KS; Suh KY
    Electrophoresis; 2009 Sep; 30(18):3206-11. PubMed ID: 19722211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic immunoassay with plug-in liquid crystal for optical detection of antibody.
    Zhu Q; Yang KL
    Anal Chim Acta; 2015 Jan; 853():696-701. PubMed ID: 25467520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous sample washing and concentration using a "trapping-and-releasing" mechanism of magnetic beads on a microfluidic chip.
    Ramadan Q; Gijs MA
    Analyst; 2011 Mar; 136(6):1157-66. PubMed ID: 21270982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterned immobilization of antibodies within roll-to-roll hot embossed polymeric microfluidic channels.
    Feyssa B; Liedert C; Kivimaki L; Johansson LS; Jantunen H; Hakalahti L
    PLoS One; 2013; 8(7):e68918. PubMed ID: 23874811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screen-printed microfluidic device for electrochemical immunoassay.
    Dong H; Li CM; Zhang YF; Cao XD; Gan Y
    Lab Chip; 2007 Dec; 7(12):1752-8. PubMed ID: 18030397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein binding reaction enhanced by bi-directional flow driven by on-chip thermopneumatic actuator.
    Lei KF; Chen KH; Chang YC
    Biomed Microdevices; 2014 Apr; 16(2):325-32. PubMed ID: 24474184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.