These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 23305343)

  • 61. [Experimental study of tissue engineered bone with cryopreservation on healing of bone defects].
    Luo X; Yang Z; Deng L
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Jul; 19(7):569-73. PubMed ID: 16108348
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bone regeneration with algae-derived hydroxyapatite: a pilot histologic and histomorphometric study in rabbit tibia defects.
    Scarano A; Perrotti V; Degidi M; Piattelli A; Iezzi G
    Int J Oral Maxillofac Implants; 2012; 27(2):336-40. PubMed ID: 22442772
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Evaluation of Influence of Zeolite/Collagen Nanocomposite (ZC) and Hydroxyapatite (HA) on Bone Healing: A Study on Rabbits.
    Faraji D; Jahandideh A; Asghari A; Akbarzadeh A; Hesaraki S
    Arch Razi Inst; 2019 Dec; 74(4):395-403. PubMed ID: 31939256
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Osteoconductive effects of 3 heat-treated hydroxyapatites in rabbit calvarial defects.
    Pripatnanont P; Nuntanaranont T; Vongvatcharanon S; Limlertmongkol S
    J Oral Maxillofac Surg; 2007 Dec; 65(12):2418-24. PubMed ID: 18022463
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Guided bone regeneration in the treatment of segmental diaphyseal defects: a comparison between resorbable and non-resorbable membranes.
    Nasser NJ; Friedman A; Friedman M; Moor E; Mosheiff R
    Injury; 2005 Dec; 36(12):1460-6. PubMed ID: 16243336
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Experimental study of artificial bone composite of bicoral, rhBMP-2 and PLA in repairing calvarial defects].
    Chen X; Mao T; Dai Y
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2003 Dec; 21(6):474-6. PubMed ID: 14732986
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bone regeneration in athymic calvarial defects with Accell DBM100.
    Mhawi AA; Peel SA; Fok TC; Clokie CM
    J Craniofac Surg; 2007 May; 18(3):497-503. PubMed ID: 17538308
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Osteopontin and bone metabolism in healing cranial defects in rabbits.
    Gordjestani M; Dermaut L; De Ridder L; De Waele P; De Leersnijder W; Bosman F
    Int J Oral Maxillofac Surg; 2006 Dec; 35(12):1127-32. PubMed ID: 17014992
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bone regeneration with a combination of nanocrystalline hydroxyapatite silica gel, platelet-rich growth factor, and mesenchymal stem cells: a histologic study in rabbit calvaria.
    Behnia H; Khojasteh A; Kiani MT; Khoshzaban A; Mashhadi Abbas F; Bashtar M; Dashti SG
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2013 Feb; 115(2):e7-15. PubMed ID: 23312925
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Bone printing: new frontiers in the treatment of bone defects.
    Arealis G; Nikolaou VS
    Injury; 2015 Dec; 46 Suppl 8():S20-2. PubMed ID: 26747913
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Hydroxyapatite use in dental practice. 2. Repair of bone defects in dental and jaw surgery operations].
    Jungkunz W
    ZWR; 1989 Jun; 98(6):506-8. PubMed ID: 2560601
    [No Abstract]   [Full Text] [Related]  

  • 72. Electrically stimulated bone healing--morphologic study in rabbits.
    Sostaric BR; Zook BC
    Exp Pathol; 1987; 31(3):129-46. PubMed ID: 3497053
    [No Abstract]   [Full Text] [Related]  

  • 73. Radionuclide Imaging of Alveolar Bone: The State of the Art.
    Garcia DA
    J Periodontol; 1979 Apr; 50 Suppl 4S():35-42. PubMed ID: 29538884
    [No Abstract]   [Full Text] [Related]  

  • 74. Implantable biomedical materials for treatment of bone infection.
    Shuaishuai W; Tongtong Z; Dapeng W; Mingran Z; Xukai W; Yue Y; Hengliang D; Guangzhi W; Minglei Z
    Front Bioeng Biotechnol; 2023; 11():1081446. PubMed ID: 36793442
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Endocytic mechanisms and osteoinductive profile of hydroxyapatite nanoparticles in human umbilical cord Wharton's jelly-derived mesenchymal stem cells.
    Shi X; Zhou K; Huang F; Zhang J; Wang C
    Int J Nanomedicine; 2018; 13():1457-1470. PubMed ID: 29559775
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Interaction of hydroxyapatite nanoparticles with endothelial cells: internalization and inhibition of angiogenesis in vitro through the PI3K/Akt pathway.
    Shi X; Zhou K; Huang F; Wang C
    Int J Nanomedicine; 2017; 12():5781-5795. PubMed ID: 28848353
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway.
    Ho MH; Yao CJ; Liao MH; Lin PI; Liu SH; Chen RM
    Int J Nanomedicine; 2015; 10():5941-54. PubMed ID: 26451104
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nanostructured porous silicon: the winding road from photonics to cell scaffolds - a review.
    Hernández-Montelongo J; Muñoz-Noval A; García-Ruíz JP; Torres-Costa V; Martín-Palma RJ; Manso-Silván M
    Front Bioeng Biotechnol; 2015; 3():60. PubMed ID: 26029688
    [TBL] [Abstract][Full Text] [Related]  

  • 79. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects.
    Xiong L; Zeng J; Yao A; Tu Q; Li J; Yan L; Tang Z
    Int J Nanomedicine; 2015; 10():517-26. PubMed ID: 25609957
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Hollow hydroxyapatite microspheres/chitosan composite as a sustained delivery vehicle for rhBMP-2 in the treatment of bone defects.
    Yao AH; Li XD; Xiong L; Zeng JH; Xu J; Wang DP
    J Mater Sci Mater Med; 2015 Jan; 26(1):5336. PubMed ID: 25578692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.