These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23305396)

  • 21. Active Site of the NAD(+)-Reducing Hydrogenase from Ralstonia eutropha Studied by EPR Spectroscopy.
    Löwenstein J; Lauterbach L; Teutloff C; Lenz O; Bittl R
    J Phys Chem B; 2015 Oct; 119(43):13834-41. PubMed ID: 26214595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and oxidation-state changes at its nonstandard Ni-Fe site during activation of the NAD-reducing hydrogenase from Ralstonia eutropha detected by X-ray absorption, EPR, and FTIR spectroscopy.
    Burgdorf T; Löscher S; Liebisch P; Van der Linden E; Galander M; Lendzian F; Meyer-Klaucke W; Albracht SP; Friedrich B; Dau H; Haumann M
    J Am Chem Soc; 2005 Jan; 127(2):576-92. PubMed ID: 15643882
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-standard structures of the Ni-Fe cofactor in the regulatory and the NAD-reducing hydrogenases from Ralstonia eutropha.
    Löscher S; Burgdorf T; Buhrke T; Friedrich B; Dau H; Haumann M
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):25-7. PubMed ID: 15667255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical characterization of ethanol-dependent reduction of furfural by alcohol dehydrogenases.
    Li Q; Metthew Lam LK; Xun L
    Biodegradation; 2011 Nov; 22(6):1227-37. PubMed ID: 21526389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Furfural reduction mechanism of a zinc-dependent alcohol dehydrogenase from Cupriavidus necator JMP134.
    Kang C; Hayes R; Sanchez EJ; Webb BN; Li Q; Hooper T; Nissen MS; Xun L
    Mol Microbiol; 2012 Jan; 83(1):85-95. PubMed ID: 22081946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct detection of a hydrogen ligand in the [NiFe] center of the regulatory H2-sensing hydrogenase from Ralstonia eutropha in its reduced state by HYSCORE and ENDOR spectroscopy.
    Brecht M; van Gastel M; Buhrke T; Friedrich B; Lubitz W
    J Am Chem Soc; 2003 Oct; 125(43):13075-83. PubMed ID: 14570480
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical modification of catalytically essential functional groups of NAD-dependent hydrogenase from Ralstonia eutropha H16.
    Tikhonova TV; Savel'eva ND; Popov VO
    Biochemistry (Mosc); 2003 Sep; 68(9):994-1001. PubMed ID: 14606942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional analysis by site-directed mutagenesis of the NAD(+)-reducing hydrogenase from Ralstonia eutropha.
    Burgdorf T; De Lacey AL; Friedrich B
    J Bacteriol; 2002 Nov; 184(22):6280-8. PubMed ID: 12399498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing cofactor recycling in the bioconversion of racemic alcohols to chiral amines with alcohol dehydrogenase and amine dehydrogenase by coupling cells and cell-free system.
    Liu J; Li Z
    Biotechnol Bioeng; 2019 Mar; 116(3):536-542. PubMed ID: 30536736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]-hydrogenase of ralstonia eutropha H16 by way of a cyanide ligand to nickel.
    Bleijlevens B; Buhrke T; van der Linden E; Friedrich B; Albracht SP
    J Biol Chem; 2004 Nov; 279(45):46686-91. PubMed ID: 15342627
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production and purification of a soluble hydrogenase from Ralstonia eutropha H16 for potential hydrogen fuel cell applications.
    Jugder BE; Lebhar H; Aguey-Zinsou KF; Marquis CP
    MethodsX; 2016; 3():242-50. PubMed ID: 27077052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of two novel alcohol short-chain dehydrogenases/reductases from Ralstonia eutropha H16 capable of stereoselective conversion of bulky substrates.
    Magomedova Z; Grecu A; Sensen CW; Schwab H; Heidinger P
    J Biotechnol; 2016 Mar; 221():78-90. PubMed ID: 26812656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Valorization of whey-based side streams for microbial biomass, molecular hydrogen, and hydrogenase production.
    Poladyan A; Trchounian K; Paloyan A; Minasyan E; Aghekyan H; Iskandaryan M; Khoyetsyan L; Aghayan S; Tsaturyan A; Antranikian G
    Appl Microbiol Biotechnol; 2023 Jul; 107(14):4683-4696. PubMed ID: 37289241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combining spectroscopy and theory to evaluate structural models of metalloenzymes: a case study on the soluble [NiFe] hydrogenase from Ralstonia eutropha.
    Horch M; Rippers Y; Mroginski MA; Hildebrandt P; Zebger I
    Chemphyschem; 2013 Jan; 14(1):185-91. PubMed ID: 23161555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Continuous Supply of Non-Combustible Gas Mixture for Safe Autotrophic Culture to Produce Polyhydroxyalkanoate by Hydrogen-Oxidizing Bacteria.
    Miyahara Y; Wang CT; Ishii-Hyakutake M; Tsuge T
    Bioengineering (Basel); 2022 Oct; 9(10):. PubMed ID: 36290554
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and characterisation of synthetic operons for biohydrogen technology.
    Lamont CM; Sargent F
    Arch Microbiol; 2017 Apr; 199(3):495-503. PubMed ID: 27872947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of soluble regulatory hydrogenase from Ralstonia eutropha in Escherichia coli using a fed-batch-based autoinduction system.
    Fan Q; Neubauer P; Gimpel M
    Microb Cell Fact; 2021 Oct; 20(1):201. PubMed ID: 34663324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of organic waste glycerol to produce crude extracts of bacterial cells and microbial hydrogenase-the anode enzymes of bio-electrochemical systems.
    Poladyan A; Blbulyan S; Semashko T; Dziameshka V; Zhukouskaya L; Trchоunian A
    FEMS Microbiol Lett; 2020 Apr; 367(7):. PubMed ID: 32267913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectroscopic and Kinetic Properties of the Molybdenum-containing, NAD+-dependent Formate Dehydrogenase from Ralstonia eutropha.
    Niks D; Duvvuru J; Escalona M; Hille R
    J Biol Chem; 2016 Jan; 291(3):1162-74. PubMed ID: 26553877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.