These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 23305513)
1. Surface transformations of Bioglass 45S5 during scaffold synthesis for bone tissue engineering. Abdollahi S; Ma AC; Cerruti M Langmuir; 2013 Feb; 29(5):1466-74. PubMed ID: 23305513 [TBL] [Abstract][Full Text] [Related]
2. Porous poly(alpha-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: Preparation and in vitro characterisation. Maquet V; Boccaccini AR; Pravata L; Notingher I; Jérôme R Biomaterials; 2004 Aug; 25(18):4185-94. PubMed ID: 15046908 [TBL] [Abstract][Full Text] [Related]
3. Bioactivity of polyurethane-based scaffolds coated with Bioglass. Bil M; Ryszkowska J; Roether JA; Bretcanu O; Boccaccini AR Biomed Mater; 2007 Jun; 2(2):93-101. PubMed ID: 18458441 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of mechanical property and bioactivity of nano-bioglass 45S5 scaffold coated with poly-3-hydroxybutyrate. Montazeri M; Karbasi S; Foroughi MR; Monshi A; Ebrahimi-Kahrizsangi R J Mater Sci Mater Med; 2015 Feb; 26(2):62. PubMed ID: 25631260 [TBL] [Abstract][Full Text] [Related]
5. Effect of pH and ionic strength on the reactivity of Bioglass 45S5. Cerruti M; Greenspan D; Powers K Biomaterials; 2005 May; 26(14):1665-74. PubMed ID: 15576140 [TBL] [Abstract][Full Text] [Related]
6. Preparation, characterization, and in vitro degradation of bioresorbable and bioactive composites based on Bioglass-filled polylactide foams. Maquet V; Boccaccini AR; Pravata L; Notingher I; Jérôme R J Biomed Mater Res A; 2003 Aug; 66(2):335-46. PubMed ID: 12889004 [TBL] [Abstract][Full Text] [Related]
7. Vaterite deposition on biodegradable polymer foam scaffolds for inducing bone-like hydroxycarbonate apatite coatings. Maeda H; Maquet V; Kasuga T; Chen QZ; Roether JA; Boccaccini AR J Mater Sci Mater Med; 2007 Dec; 18(12):2269-73. PubMed ID: 17562142 [TBL] [Abstract][Full Text] [Related]
8. Mechanical properties of highly porous PDLLA/Bioglass composite foams as scaffolds for bone tissue engineering. Blaker JJ; Maquet V; Jérôme R; Boccaccini AR; Nazhat SN Acta Biomater; 2005 Nov; 1(6):643-52. PubMed ID: 16701845 [TBL] [Abstract][Full Text] [Related]
9. Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering. Francis L; Meng D; Knowles JC; Roy I; Boccaccini AR Acta Biomater; 2010 Jul; 6(7):2773-86. PubMed ID: 20056174 [TBL] [Abstract][Full Text] [Related]
10. In vitro studies of annulus fibrosus disc cell attachment, differentiation and matrix production on PDLLA/45S5 Bioglass composite films. Wilda H; Gough JE Biomaterials; 2006 Oct; 27(30):5220-9. PubMed ID: 16814857 [TBL] [Abstract][Full Text] [Related]
11. In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds. Blaker JJ; Gough JE; Maquet V; Notingher I; Boccaccini AR J Biomed Mater Res A; 2003 Dec; 67(4):1401-11. PubMed ID: 14624528 [TBL] [Abstract][Full Text] [Related]
12. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Chen QZ; Thompson ID; Boccaccini AR Biomaterials; 2006 Apr; 27(11):2414-25. PubMed ID: 16336997 [TBL] [Abstract][Full Text] [Related]
13. Premature degradation of poly(alpha-hydroxyesters) during thermal processing of Bioglass-containing composites. Blaker JJ; Bismarck A; Boccaccini AR; Young AM; Nazhat SN Acta Biomater; 2010 Mar; 6(3):756-62. PubMed ID: 19683603 [TBL] [Abstract][Full Text] [Related]
14. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. Kim SS; Ahn KM; Park MS; Lee JH; Choi CY; Kim BS J Biomed Mater Res A; 2007 Jan; 80(1):206-15. PubMed ID: 17072849 [TBL] [Abstract][Full Text] [Related]
15. Novel poly(hydroxyalkanoates)-based composites containing Bioglass® and calcium sulfate for bone tissue engineering. García-García JM; Garrido L; Quijada-Garrido I; Kaschta J; Schubert DW; Boccaccini AR Biomed Mater; 2012 Oct; 7(5):054105. PubMed ID: 22972204 [TBL] [Abstract][Full Text] [Related]
16. Systematic evaluation of the osteogenic capacity of low-melting bioactive glass-reinforced 45S5 Bioglass porous scaffolds in rabbit femoral defects. Zhang L; Ke X; Lin L; Xiao J; Yang X; Wang J; Yang G; Xu S; Gou Z; Shi Z Biomed Mater; 2017 Jun; 12(3):035010. PubMed ID: 28589920 [TBL] [Abstract][Full Text] [Related]
17. Bioglass/carbonate apatite/collagen composite scaffold dissolution products promote human osteoblast differentiation. Ferreira SA; Young G; Jones JR; Rankin S Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111393. PubMed ID: 33254998 [TBL] [Abstract][Full Text] [Related]
18. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Day RM; Boccaccini AR; Shurey S; Roether JA; Forbes A; Hench LL; Gabe SM Biomaterials; 2004 Dec; 25(27):5857-66. PubMed ID: 15172498 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds. Chen QZ; Thouas GA Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791 [TBL] [Abstract][Full Text] [Related]
20. Surface modifications of bioglass immersed in TRIS-buffered solution. A multitechnical spectroscopic study. Cerruti M; Bianchi CL; Bonino F; Damin A; Perardi A; Morterra C J Phys Chem B; 2005 Aug; 109(30):14496-505. PubMed ID: 16852827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]