BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 23305793)

  • 41. MMP-9 inhibition by ACE inhibitor reduces oxidized LDL-mediated foam-cell formation.
    Kojima C; Ino J; Ishii H; Nitta K; Yoshida M
    J Atheroscler Thromb; 2010 Feb; 17(1):97-105. PubMed ID: 20093780
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nifedipine inhibits ox-LDL-induced lipid accumulation in human blood-derived macrophages.
    Zhang Q; Sha Ma AZ; Wang C; Tang WQ; Song ZY
    Biochem Biophys Res Commun; 2015 Feb; 457(3):440-4. PubMed ID: 25592969
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Endoplasmic reticulum stress mediates oxidized low density lipoprotein-induced scavenger receptor A1 upregulation in macrophages].
    Yao ST; Zhao L; Miao C; Tian H; Yang NN; Guo SD; Zhai L; Chen J; Wang YW; Qin SC
    Sheng Li Xue Bao; 2014 Oct; 66(5):612-8. PubMed ID: 25332008
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The atheroprotective role of lipoxin A
    Mai J; Liu W; Fang Y; Zhang S; Qiu Q; Yang Y; Wang X; Huang T; Zhang H; Xie Y; Lin M; Chen Y; Wang J
    Atherosclerosis; 2018 Nov; 278():259-268. PubMed ID: 30340110
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 1,25(OH)2 vitamin d inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes mellitus.
    Oh J; Weng S; Felton SK; Bhandare S; Riek A; Butler B; Proctor BM; Petty M; Chen Z; Schechtman KB; Bernal-Mizrachi L; Bernal-Mizrachi C
    Circulation; 2009 Aug; 120(8):687-98. PubMed ID: 19667238
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Macrophage uptake of low-density lipoprotein bound to aggregated C-reactive protein: possible mechanism of foam-cell formation in atherosclerotic lesions.
    Fu T; Borensztajn J
    Biochem J; 2002 Aug; 366(Pt 1):195-201. PubMed ID: 12033985
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages.
    Ouchi N; Kihara S; Arita Y; Nishida M; Matsuyama A; Okamoto Y; Ishigami M; Kuriyama H; Kishida K; Nishizawa H; Hotta K; Muraguchi M; Ohmoto Y; Yamashita S; Funahashi T; Matsuzawa Y
    Circulation; 2001 Feb; 103(8):1057-63. PubMed ID: 11222466
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Detailed characterization of the endocannabinoid system in human macrophages and foam cells, and anti-inflammatory role of type-2 cannabinoid receptor.
    Chiurchiù V; Lanuti M; Catanzaro G; Fezza F; Rapino C; Maccarrone M
    Atherosclerosis; 2014 Mar; 233(1):55-63. PubMed ID: 24529123
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CD14 is a key mediator of both lysophosphatidic acid and lipopolysaccharide induction of foam cell formation.
    An D; Hao F; Zhang F; Kong W; Chun J; Xu X; Cui MZ
    J Biol Chem; 2017 Sep; 292(35):14391-14400. PubMed ID: 28705936
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential expression of scavenger receptor isoforms during monocyte-macrophage differentiation and foam cell formation.
    Geng Y; Kodama T; Hansson GK
    Arterioscler Thromb; 1994 May; 14(5):798-806. PubMed ID: 8172856
    [TBL] [Abstract][Full Text] [Related]  

  • 51. How do macrophages sense modified low-density lipoproteins?
    Chistiakov DA; Melnichenko AA; Orekhov AN; Bobryshev YV
    Int J Cardiol; 2017 Mar; 230():232-240. PubMed ID: 28052815
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Group V secretory phospholipase A2-modified low density lipoprotein promotes foam cell formation by a SR-A- and CD36-independent process that involves cellular proteoglycans.
    Boyanovsky BB; van der Westhuyzen DR; Webb NR
    J Biol Chem; 2005 Sep; 280(38):32746-52. PubMed ID: 16040605
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recognition of oxidized low density lipoprotein by the scavenger receptor of macrophages results from derivatization of apolipoprotein B by products of fatty acid peroxidation.
    Steinbrecher UP; Lougheed M; Kwan WC; Dirks M
    J Biol Chem; 1989 Sep; 264(26):15216-23. PubMed ID: 2768257
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of macrophage foam cell formation by alphaVbeta3 integrin: potential role in human atherosclerosis.
    Antonov AS; Kolodgie FD; Munn DH; Gerrity RG
    Am J Pathol; 2004 Jul; 165(1):247-58. PubMed ID: 15215180
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Porphyromonas gingivalis induces murine macrophage foam cell formation.
    Qi M; Miyakawa H; Kuramitsu HK
    Microb Pathog; 2003 Dec; 35(6):259-67. PubMed ID: 14580389
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of hydrostatic pressure in foam cell formation upon exposure of macrophages to LDL and oxidized LDL.
    Evans CE; Mylchreest S; Charlton-Menys V; Durrington P
    Atherosclerosis; 2008 Apr; 197(2):596-601. PubMed ID: 17915224
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Effect of estradiol on cholesterol metabolism in J774a.1 mouse mononuclear/macrophage cells].
    Wang X; Liu J; Duan WL; Shang J
    Yao Xue Xue Bao; 2014 Jul; 49(7):1013-8. PubMed ID: 25233632
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fluid-phase pinocytosis of LDL by macrophages: a novel target to reduce macrophage cholesterol accumulation in atherosclerotic lesions.
    Kruth HS
    Curr Pharm Des; 2013; 19(33):5865-72. PubMed ID: 23438954
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Glycoxidized low-density lipoprotein regulates the expression of scavenger receptors in THP-1 macrophages.
    Lam MC; Tan KC; Lam KS
    Atherosclerosis; 2004 Dec; 177(2):313-20. PubMed ID: 15530905
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of Rab5 in the formation of macrophage-derived foam cell.
    Chan L; Hong J; Pan J; Li J; Wen Z; Shi H; Ding J; Luo X
    Lipids Health Dis; 2017 Sep; 16(1):170. PubMed ID: 28899395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.