These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 233058)

  • 21. Biochemical characteristics of non-streptomycin-producing mutants of Streptomyces griseus. I. Role of NAD (P)-glycohydrolase in cell differentiation.
    Gräfe U; Roth M; Christner A; Bormann EJ
    Z Allg Mikrobiol; 1981; 21(9):633-42. PubMed ID: 6801874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Production of protease and streptomycin from the culture liquid of Streptomyces griseus by methanol separation].
    Tsyperovich AS; Kondrat'eva LG
    Prikl Biokhim Mikrobiol; 1973; 9(6):886-90. PubMed ID: 4219049
    [No Abstract]   [Full Text] [Related]  

  • 23. Purification and specificity of carboxypeptidase from Streptomyces griseus K-1.
    Narahashi Y; Yoda K; Honda S
    J Biochem; 1977 Aug; 82(2):615-8. PubMed ID: 410802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biosynthesis of streptomycin. Enzymic oxidation of dihydrostreptomycin (6-phosphate) to streptomycin (6-phosphate) with a particulate fraction of Streptomyces griseus.
    Maier S; Grisebach H
    Biochim Biophys Acta; 1979 Aug; 586(2):231-41. PubMed ID: 89869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prevention of loss of Streptomycin production on repeated transfer of Streptomyces griseus.
    MUSILEK V
    Appl Microbiol; 1963 Jan; 11(1):28-9. PubMed ID: 13936846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Dynamics of formation of individual enzymes of the proteolytic complex during cultivation of Streptomyces griseus].
    Tsyperovich AS; Kondrat'eva LG; Lysenkov NV; Slukhovskaia MA; Etinger AS
    Mikrobiologiia; 1975; 44(1):37-41. PubMed ID: 808688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selection of Streptomyces griseus protease B mutants with desired alterations in primary specificity using a library screening strategy.
    Sidhu SS; Borgford TJ
    J Mol Biol; 1996 Mar; 257(2):233-45. PubMed ID: 8609620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of Glu196 in the environment around the substrate binding site of leucine aminopeptidase from Streptomyces griseus.
    Arima J; Uesugi Y; Uraji M; Iwabuchi M; Hatanaka T
    FEBS Lett; 2006 Feb; 580(3):912-7. PubMed ID: 16427629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phenotypic heterogeneity of the progeny of Streptomyces griseus conidia.
    Szabó G; Vitális S; Szeszák F; Bíró S
    Acta Biol Hung; 1997; 48(1):45-65. PubMed ID: 9199700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diversity analysis of streptomycetes and associated phosphotranspherase genes in soil.
    Laskaris P; Sekine T; Wellington EM
    PLoS One; 2012; 7(4):e35756. PubMed ID: 22540003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of streptomycin from chitin using Streptomyces griseus in bioreactors of different configuration.
    Meanwell RJ; Shama G
    Bioresour Technol; 2008 Sep; 99(13):5634-9. PubMed ID: 18054224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Streptomyces ATP nucleotide 3'-pyrophosphokinase is also an ApppA nucleotide 2',3'-cyclic phosphokinase.
    Mukai J; Ikuta R; Shoji T; Hirashima A
    Nucleic Acids Symp Ser; 1989; (21):37-8. PubMed ID: 2558352
    [No Abstract]   [Full Text] [Related]  

  • 33. Biochemical characteristics of non-streptomycin-producing mutants of Streptomyces griseus. II. Lipids and fatty acid composition of vegetative mycelia.
    Gräfe U; Reinhardt G; Krebs D; Roth M; Bormann EJ
    Z Allg Mikrobiol; 1982; 22(2):97-106. PubMed ID: 6807000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [New (technical) protease preparation of Streptomyces griseus].
    Tsyperovich AS; Gudina AE; Kondrat'eva LG; Bogatyrev VM; Slukhovskaia MA
    Ukr Biokhim Zh; 1973; 45(3):362-6. PubMed ID: 4208391
    [No Abstract]   [Full Text] [Related]  

  • 35. Gene cloning and overproduction of an aminopeptidase from Streptomyces septatus TH-2, and comparison with a calcium-activated enzyme from Streptomyces griseus.
    Arima J; Iwabuchi M; Hatanaka T
    Biochem Biophys Res Commun; 2004 Apr; 317(2):531-8. PubMed ID: 15063790
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antibiotic production of hyphal fractions of Streptomyces griseus. II. Streptomycin production of different fractions obtained by density gradient centrifugation.
    Szeszák F; Szabó G
    Appl Microbiol; 1967 Sep; 15(5):1010-3. PubMed ID: 6077406
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Isolation and various properties of the lytic enzyme preparation from Streptomyces griseus].
    Zinkevichiute IaA; Shpokene AP; Kuznetsov VD; Andriushkevichiute RA; Palubinskas VI
    Antibiot Khimioter; 1988 Feb; 33(2):94-6. PubMed ID: 3132114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Isolation of Streptomyces griseus mutants by blocking streptomycin synthesis and research on their proteolytic activity].
    Bambura OI; Strizhkova AM
    Mikrobiol Zh (1978); 1983; 45(4):14-6. PubMed ID: 6443858
    [No Abstract]   [Full Text] [Related]  

  • 39. Active centers of Streptomyces griseus protease 1, Streptomyces griseus protease 3, and alpha-chymotrypsin: enzyme-substrate interactions.
    Bauer CA
    Biochemistry; 1978 Jan; 17(2):375-80. PubMed ID: 413567
    [No Abstract]   [Full Text] [Related]  

  • 40. Comparison of protein patterns of Streptomyces griseus spores from surface and submerged cultures.
    Valu G; Vitális S; Békési I; Szabó G
    Z Allg Mikrobiol; 1984; 24(10):703-8. PubMed ID: 6441361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.