These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 23305917)
41. Variation of mercury fractionation and speciation in municipal sewage treatment plant: effects of mercury on the atmosphere. Li Y; Wang Y; Liu R; Shao L; Liu X; Han K; Song P Environ Sci Pollut Res Int; 2022 May; 29(24):36475-36485. PubMed ID: 35064483 [TBL] [Abstract][Full Text] [Related]
42. Gaseous elemental mercury in the marine boundary layer and air-sea flux in the Southern Ocean in austral summer. Wang J; Xie Z; Wang F; Kang H Sci Total Environ; 2017 Dec; 603-604():510-518. PubMed ID: 28645049 [TBL] [Abstract][Full Text] [Related]
43. Behavior of mercury emissions from a commercial coal-fired power plant: the relationship between stack speciation and near-field plume measurements. Landis MS; Ryan JV; ter Schure AF; Laudal D Environ Sci Technol; 2014 Nov; 48(22):13540-8. PubMed ID: 25325168 [TBL] [Abstract][Full Text] [Related]
44. Denitrification devices in urban boilers change mercury isotope fractionation signatures of coal combustion products. Yuan J; Sun R; Wang R; Fu B; Meng M; Zheng W; Chen J Environ Pollut; 2021 Jan; 268(Pt B):115753. PubMed ID: 33045583 [TBL] [Abstract][Full Text] [Related]
45. Mercury atmospheric emission, deposition and isotopic fingerprinting from major coal-fired power plants in Australia: Insights from palaeo-environmental analysis from sediment cores. Schneider L; Rose NL; Myllyvirta L; Haberle S; Lintern A; Yuan J; Sinclair D; Holley C; Zawadzki A; Sun R Environ Pollut; 2021 Oct; 287():117596. PubMed ID: 34426387 [TBL] [Abstract][Full Text] [Related]
46. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China. Ancora MP; Zhang L; Wang S; Schreifels J; Hao J J Environ Sci (China); 2015 Jul; 33():125-34. PubMed ID: 26141885 [TBL] [Abstract][Full Text] [Related]
47. Synergistic mercury removal by conventional pollutant control strategies for coal-fired power plants in China. Wang S; Zhang L; Wu Y; Ancora MP; Zhao Y; Hao J J Air Waste Manag Assoc; 2010 Jun; 60(6):722-30. PubMed ID: 20564998 [TBL] [Abstract][Full Text] [Related]
48. Effect of the shutdown of a large coal-fired power plant on ambient mercury species. Wang Y; Huang J; Hopke PK; Rattigan OV; Chalupa DC; Utell MJ; Holsen TM Chemosphere; 2013 Jul; 92(4):360-7. PubMed ID: 23422172 [TBL] [Abstract][Full Text] [Related]
49. Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM Li Z; Jiang J; Ma Z; Fajardo OA; Deng J; Duan L Environ Pollut; 2017 Nov; 230():655-662. PubMed ID: 28715770 [TBL] [Abstract][Full Text] [Related]
50. The occurrence, transformation and control of selenium in coal-fired power plants: Status quo and development. Ma S; Xu F; Qiu D; Fan S; Wang R; Li Y; Chen X J Air Waste Manag Assoc; 2022 Feb; 72(2):131-146. PubMed ID: 34846276 [TBL] [Abstract][Full Text] [Related]
51. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 2. arsenic, chromium, barium, manganese, lead. Zhao S; Duan Y; Chen L; Li Y; Yao T; Liu S; Liu M; Lu J Environ Pollut; 2017 Jul; 226():404-411. PubMed ID: 28416223 [TBL] [Abstract][Full Text] [Related]
52. Significant Enhancement of Gaseous Elemental Mercury Recovery from Coal-Fired Flue Gas by Phosphomolybdic Acid Grafting on Sulfurated γ-Fe Mei J; Sun P; Wang C; Zhang Q; Hu Q; Yang S Environ Sci Technol; 2020 Feb; 54(3):1992-2001. PubMed ID: 31894980 [TBL] [Abstract][Full Text] [Related]
54. Total mercury flux and offshore transport via submarine groundwater discharge and coal-fired power plant in the Jiulong River estuary, China. Wang J; Liu Q; Chen J; Chen H; Lin H; Sun X Mar Pollut Bull; 2018 Feb; 127():794-803. PubMed ID: 29042105 [TBL] [Abstract][Full Text] [Related]
55. Analysis of mercury in rock varnish samples in areas impacted by coal-fired power plants. Nowinski P; Hodge VF; Gerstenberger S; Cizdziel JV Environ Pollut; 2013 Aug; 179():132-7. PubMed ID: 23669462 [TBL] [Abstract][Full Text] [Related]
56. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China. Tang S; Feng X; Qiu J; Yin G; Yang Z Environ Res; 2007 Oct; 105(2):175-82. PubMed ID: 17517388 [TBL] [Abstract][Full Text] [Related]
57. Differentiated emission control strategy based on comprehensive evaluation of multi-media pollution: Case of mercury emission control. Lv D; Wu Q; Ouyang D; Wen M; Zhang G; Wang S; Duan L J Environ Sci (China); 2023 Jan; 123():222-234. PubMed ID: 36521986 [TBL] [Abstract][Full Text] [Related]
58. Emissions of mercury and other trace elements from coal-fired power plants in Japan. Ito S; Yokoyama T; Asakura K Sci Total Environ; 2006 Sep; 368(1):397-402. PubMed ID: 16225907 [TBL] [Abstract][Full Text] [Related]
59. Mercury and other trace elements in Ohio River fish collected near coal-fired power plants: Interspecific patterns and consideration of consumption risks. Reash RJ; Brown L; Merritt K Integr Environ Assess Manag; 2015 Jul; 11(3):474-80. PubMed ID: 25586716 [TBL] [Abstract][Full Text] [Related]
60. Mercury mass balances: a case study of two North Dakota power plants. Laudal DL; Pavlish JH; Graves J; Stockdill D J Air Waste Manag Assoc; 2000 Oct; 50(10):1798-804. PubMed ID: 11288308 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]