These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 23305929)

  • 1. Influencing the monophenolase/diphenolase activity ratio in tyrosinase.
    Goldfeder M; Kanteev M; Adir N; Fishman A
    Biochim Biophys Acta; 2013 Mar; 1834(3):629-33. PubMed ID: 23305929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of copper uptake by tyrosinase from Bacillus megaterium.
    Kanteev M; Goldfeder M; Chojnacki M; Adir N; Fishman A
    J Biol Inorg Chem; 2013 Dec; 18(8):895-903. PubMed ID: 24061559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of walnut tyrosinase into a catechol oxidase by site directed mutagenesis.
    Panis F; Kampatsikas I; Bijelic A; Rompel A
    Sci Rep; 2020 Feb; 10(1):1659. PubMed ID: 32015350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First structures of an active bacterial tyrosinase reveal copper plasticity.
    Sendovski M; Kanteev M; Ben-Yosef VS; Adir N; Fishman A
    J Mol Biol; 2011 Jan; 405(1):227-37. PubMed ID: 21040728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in tyrosinase specificity by ionic liquids and sodium dodecyl sulfate.
    Goldfeder M; Egozy M; Shuster Ben-Yosef V; Adir N; Fishman A
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):1953-61. PubMed ID: 22539021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effects of cupferron on the monophenolase and diphenolase activity of mushroom tyrosinase.
    Xie LP; Chen QX; Huang H; Liu XD; Chen HT; Zhang RQ
    Int J Biochem Cell Biol; 2003 Dec; 35(12):1658-66. PubMed ID: 12962705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type-3 copper proteins: recent advances on polyphenol oxidases.
    Kaintz C; Mauracher SG; Rompel A
    Adv Protein Chem Struct Biol; 2014; 97():1-35. PubMed ID: 25458353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation, cloning and characterization of a tyrosinase with improved activity in organic solvents from Bacillus megaterium.
    Shuster V; Fishman A
    J Mol Microbiol Biotechnol; 2009; 17(4):188-200. PubMed ID: 19672047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tyrosinase, mTyr-CNK, that is functionally available as a monophenol monooxygenase.
    Do H; Kang E; Yang B; Cha HJ; Choi YS
    Sci Rep; 2017 Dec; 7(1):17267. PubMed ID: 29222480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Tyrosinase from
    Li T; Zhang N; Yan S; Jiang S; Yin H
    Appl Environ Microbiol; 2021 May; 87(12):e0027521. PubMed ID: 33741625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on spectrophotometric methods for measuring the monophenolase and diphenolase activities of tyrosinase.
    García-Molina F; Muñoz JL; Varón R; Rodríguez-López JN; García-Cánovas F; Tudela J
    J Agric Food Chem; 2007 Nov; 55(24):9739-49. PubMed ID: 17958393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effects of cefotaxime on the activity of mushroom tyrosinase.
    Hu YH; Zhuang JX; Yu F; Cui Y; Yu WW; Yan CL; Chen QX
    J Biosci Bioeng; 2016 Apr; 121(4):385-9. PubMed ID: 26342770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference.
    Solem E; Tuczek F; Decker H
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2884-8. PubMed ID: 26773413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The basicity of an active-site water molecule discriminates between tyrosinase and catechol oxidase activity.
    Matoba Y; Oda K; Muraki Y; Masuda T
    Int J Biol Macromol; 2021 Jul; 183():1861-1870. PubMed ID: 34089758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes?
    Kampatsikas I; Rompel A
    Chembiochem; 2021 Apr; 22(7):1161-1175. PubMed ID: 33108057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diphenol activation of the monophenolase and diphenolase activities of field bean (Dolichos lablab) polyphenol oxidase.
    Gowda LR; Paul B
    J Agric Food Chem; 2002 Mar; 50(6):1608-14. PubMed ID: 11879044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory effect of 4-cyanobenzaldehyde and 4-cyanobenzoic acid on mushroom (Agaricus bisporus) tyrosinase.
    Chen Q; Chen QX; Qiu L; Song KK; Huang H
    J Protein Chem; 2003 Nov; 22(7-8):607-12. PubMed ID: 14714727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catechol Oxidase versus Tyrosinase Classification Revisited by Site-Directed Mutagenesis Studies.
    Prexler SM; Frassek M; Moerschbacher BM; Dirks-Hofmeister ME
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8757-8761. PubMed ID: 31037807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio.
    Hernández-Romero D; Sanchez-Amat A; Solano F
    FEBS J; 2006 Jan; 273(2):257-70. PubMed ID: 16403014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp shares catalytic capabilities of tyrosinases and laccases.
    Sanchez-Amat A; Solano F
    Biochem Biophys Res Commun; 1997 Nov; 240(3):787-92. PubMed ID: 9398646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.