BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 23306018)

  • 21. In vitro and in vivo application of RNA interference for targeting genes involved in peritrophic matrix synthesis in a lepidopteran system.
    Toprak U; Baldwin D; Erlandson M; Gillott C; Harris S; Hegedus DD
    Insect Sci; 2013 Feb; 20(1):92-100. PubMed ID: 23955829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of a bioactive Bowman-Birk inhibitor from an insect-resistant early maize inbred.
    Johnson ET; Skory C; Dowd PF
    J Agric Food Chem; 2014 Jun; 62(24):5458-65. PubMed ID: 24869634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aboveground to belowground herbivore defense signaling in maize: a two-way street?
    Luthe DS; Gill T; Zhu L; Lopéz L; Pechanova O; Shivaji R; Ankala A; Williams WP
    Plant Signal Behav; 2011 Jan; 6(1):126-9. PubMed ID: 21270535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning, expression and chitin-binding activity of two peritrophin-like protein genes in the common cutworm, Spodoptera litura.
    Chen WJ; Huang LX; Hu D; Liu LY; Gu J; Huang LH; Feng QL
    Insect Sci; 2014 Aug; 21(4):449-58. PubMed ID: 23955994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterologous expression of maize (Zea mays L.) Mir1 cysteine proteinase in eukaryotic and prokaryotic expression systems.
    Pechan T; Ma PW; Luthe DS
    Protein Expr Purif; 2004 Mar; 34(1):134-41. PubMed ID: 14766309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intraplant communication in maize contributes to defense against insects.
    Varsani S; Basu S; Williams WP; Felton GW; Luthe DS; Louis J
    Plant Signal Behav; 2016 Aug; 11(8):e1212800. PubMed ID: 27467304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward the physiological basis for increased Agrotis ipsilon multiple nucleopolyhedrovirus infection following feeding of Agrotis ipsilon larvae on transgenic corn expressing Cry1Fa2.
    Schmidt NR; Haywood JM; Bonning BC
    J Invertebr Pathol; 2009 Oct; 102(2):141-8. PubMed ID: 19651136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological, nutritional, and biochemical bases of corn resistance to foliage-feeding fall armyworm.
    Chen Y; Ni X; Buntin GD
    J Chem Ecol; 2009 Mar; 35(3):297-306. PubMed ID: 19221843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An influential meal: host plant dependent transcriptional variation in the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae).
    Breeschoten T; Ros VID; Schranz ME; Simon S
    BMC Genomics; 2019 Nov; 20(1):845. PubMed ID: 31722664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The peritrophic membrane of Spodoptera frugiperda: secretion of peritrophins and role in immobilization and recycling digestive enzymes.
    Bolognesi R; Ribeiro AF; Terra WR; Ferreira C
    Arch Insect Biochem Physiol; 2001 Jun; 47(2):62-75. PubMed ID: 11376453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of the release of digestive enzymes in the larvae of the fall armyworm, Spodoptera frugiperda.
    Lwalaba D; Hoffmann KH; Woodring J
    Arch Insect Biochem Physiol; 2010 Jan; 73(1):14-29. PubMed ID: 19771560
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plant-mediated alteration of the peritrophic matrix and baculovirus infection in lepidopteran larvae.
    Plymale R; Grove MJ; Cox-Foster D; Ostiguy N; Hoover K
    J Insect Physiol; 2008 Apr; 54(4):737-49. PubMed ID: 18374352
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The peritrophic membrane as a target of proteins that play important roles in plant defense and microbial attack.
    Konno K; Mitsuhashi W
    J Insect Physiol; 2019; 117():103912. PubMed ID: 31301311
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: structural characteristics and their functions in the protease rich insect gut.
    Wang P; Li G; Granados RR
    Insect Biochem Mol Biol; 2004 Mar; 34(3):215-27. PubMed ID: 14871618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oral toxicity of beta-N-acetyl hexosaminidase to insects.
    Dowd PF; Johnson ET; Pinkerton TS
    J Agric Food Chem; 2007 May; 55(9):3421-8. PubMed ID: 17417870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial and temporal synthesis of Mamestra configurata peritrophic matrix through a larval stadium.
    Toprak U; Hegedus DD; Baldwin D; Coutu C; Erlandson M
    Insect Biochem Mol Biol; 2014 Nov; 54():89-97. PubMed ID: 25240619
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Caterpillar attack triggers accumulation of the toxic maize protein RIP2.
    Chuang WP; Herde M; Ray S; Castano-Duque L; Howe GA; Luthe DS
    New Phytol; 2014 Feb; 201(3):928-939. PubMed ID: 24304477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two essential peritrophic matrix proteins mediate matrix barrier functions in the insect midgut.
    Agrawal S; Kelkenberg M; Begum K; Steinfeld L; Williams CE; Kramer KJ; Beeman RW; Park Y; Muthukrishnan S; Merzendorfer H
    Insect Biochem Mol Biol; 2014 Jun; 49():24-34. PubMed ID: 24680676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silicon Supplementation of Maize Impacts Fall Armyworm Colonization and Increases Predator Attraction.
    Pereira P; Nascimento AM; de Souza BHS; Peñaflor MFGV
    Neotrop Entomol; 2021 Aug; 50(4):654-661. PubMed ID: 34184235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Association of a 33-kilodalton cysteine proteinase found in corn callus with the inhibition of fall armyworm larval growth.
    Jiang B; Siregar U; Willeford KO; Luthe DS; Williams WP
    Plant Physiol; 1995 Aug; 108(4):1631-40. PubMed ID: 7659755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.