BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23306149)

  • 1. Catalytic mechanism of short ethoxy chain nonylphenol dehydrogenase belonging to a polyethylene glycol dehydrogenase group in the GMC oxidoreductase family.
    Liu X; Ohta T; Kawabata T; Kawai F
    Int J Mol Sci; 2013 Jan; 14(1):1218-31. PubMed ID: 23306149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xenoestrogenic short ethoxy chain nonylphenol is oxidized by a flavoprotein alcohol dehydrogenase from Ensifer sp. strain AS08.
    Liu X; Tani A; Kimbara K; Kawai F
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1414-22. PubMed ID: 17131148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Dehydrogenation by short ethoxy chain nonylphenol dehydrogenase from Ensifer sp. AS08].
    Zhang R; Yang J; Zhou G; Zhang N; Qiao G; Liu X
    Wei Sheng Wu Xue Bao; 2011 May; 51(5):637-42. PubMed ID: 21800626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of amino acid residues involved in catalysis of polyethylene glycol dehydrogenase from Sphingopyxis terrae, using three-dimensional molecular modeling-based kinetic characterization of mutants.
    Ohta T; Kawabata T; Nishikawa K; Tani A; Kimbara K; Kawai F
    Appl Environ Microbiol; 2006 Jun; 72(6):4388-96. PubMed ID: 16751555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.
    Wongnate T; Chaiyen P
    FEBS J; 2013 Jul; 280(13):3009-27. PubMed ID: 23578136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The first step in polyethylene glycol degradation by sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide.
    Sugimoto M; Tanabe M; Hataya M; Enokibara S; Duine JA; Kawai F
    J Bacteriol; 2001 Nov; 183(22):6694-8. PubMed ID: 11673442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GMC oxidoreductases. A newly defined family of homologous proteins with diverse catalytic activities.
    Cavener DR
    J Mol Biol; 1992 Feb; 223(3):811-4. PubMed ID: 1542121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose oxidase from Penicillium amagasakiense. Primary structure and comparison with other glucose-methanol-choline (GMC) oxidoreductases.
    Kiess M; Hecht HJ; Kalisz HM
    Eur J Biochem; 1998 Feb; 252(1):90-9. PubMed ID: 9523716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of bacteria able to grow on both polyethylene glycol (PEG) and polypropylene glycol (PPG) and their PEG/PPG dehydrogenases.
    Hu X; Fukutani A; Liu X; Kimbara K; Kawai F
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1407-13. PubMed ID: 17043822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ancestral gene fusion in cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungi.
    Zámocký M; Hallberg M; Ludwig R; Divne C; Haltrich D
    Gene; 2004 Aug; 338(1):1-14. PubMed ID: 15302401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic pathway of xenoestrogenic short ethoxy chain-nonylphenol to nonylphenol by aerobic bacteria, Ensifer sp. strain AS08 and Pseudomonas sp. strain AS90.
    Liu X; Tani A; Kimbara K; Kawai F
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):552-9. PubMed ID: 16528514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for proton tunneling and a transient covalent flavin-substrate adduct in choline oxidase S101A.
    Uluisik R; Romero E; Gadda G
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1470-1478. PubMed ID: 28843728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase.
    Ferreira P; Hernández-Ortega A; Lucas F; Carro J; Herguedas B; Borrelli KW; Guallar V; Martínez AT; Medina M
    FEBS J; 2015 Aug; 282(16):3091-106. PubMed ID: 25639975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure and site-directed mutagenesis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1 explain its catalytic mechanism.
    Rohman A; van Oosterwijk N; Thunnissen AM; Dijkstra BW
    J Biol Chem; 2013 Dec; 288(49):35559-68. PubMed ID: 24165124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic studies on benzyl alcohol dehydrogenase encoded by TOL plasmid pWWO. A member of the zinc-containing long chain alcohol dehydrogenase family.
    Shaw JP; Rekik M; Schwager F; Harayama S
    J Biol Chem; 1993 May; 268(15):10842-50. PubMed ID: 8496150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Analysis Provides Mechanistic Insight into Nicotine Oxidoreductase from Pseudomonas putida.
    Tararina MA; Janda KD; Allen KN
    Biochemistry; 2016 Dec; 55(48):6595-6598. PubMed ID: 27933790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of asparagine 510 in the relative timing of substrate bond cleavages in the reaction catalyzed by choline oxidase.
    Rungsrisuriyachai K; Gadda G
    Biochemistry; 2010 Mar; 49(11):2483-90. PubMed ID: 20163155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterization of tartrate dehydrogenase: a versatile enzyme catalyzing multiple reactions.
    Malik R; Viola RE
    Acta Crystallogr D Biol Crystallogr; 2010 Jun; 66(Pt 6):673-84. PubMed ID: 20516620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton transfer in benzyl alcohol dehydrogenase during catalysis: alternate proton-relay routes.
    Inoue J; Tomioka N; Itai A; Harayama S
    Biochemistry; 1998 Mar; 37(10):3305-11. PubMed ID: 9521650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis of substrate recognition in D-3-hydroxybutyrate dehydrogenase from Pseudomonas putida.
    Feller C; Günther R; Hofmann HJ; Grunow M
    Chembiochem; 2006 Sep; 7(9):1410-8. PubMed ID: 16888731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.