BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23306196)

  • 1. Insulin-induced gene protein (INSIG)-dependent sterol regulation of Hmg2 endoplasmic reticulum-associated degradation (ERAD) in yeast.
    Theesfeld CL; Hampton RY
    J Biol Chem; 2013 Mar; 288(12):8519-8530. PubMed ID: 23306196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An autonomous, but INSIG-modulated, role for the sterol sensing domain in mallostery-regulated ERAD of yeast HMG-CoA reductase.
    Wangeline MA; Hampton RY
    J Biol Chem; 2021; 296():100063. PubMed ID: 33184059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sterol-sensing domain (SSD) directly mediates signal-regulated endoplasmic reticulum-associated degradation (ERAD) of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase isozyme Hmg2.
    Theesfeld CL; Pourmand D; Davis T; Garza RM; Hampton RY
    J Biol Chem; 2011 Jul; 286(30):26298-307. PubMed ID: 21628456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Mallostery"-ligand-dependent protein misfolding enables physiological regulation by ERAD.
    Wangeline MA; Hampton RY
    J Biol Chem; 2018 Sep; 293(38):14937-14950. PubMed ID: 30018140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UbiA prenyltransferase domain-containing protein-1 modulates HMG-CoA reductase degradation to coordinate synthesis of sterol and nonsterol isoprenoids.
    Schumacher MM; Jun DJ; Johnson BM; DeBose-Boyd RA
    J Biol Chem; 2018 Jan; 293(1):312-323. PubMed ID: 29167270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. INSIG: a broadly conserved transmembrane chaperone for sterol-sensing domain proteins.
    Flury I; Garza R; Shearer A; Rosen J; Cronin S; Hampton RY
    EMBO J; 2005 Nov; 24(22):3917-26. PubMed ID: 16270032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geranylgeranyl pyrophosphate is a potent regulator of HRD-dependent 3-Hydroxy-3-methylglutaryl-CoA reductase degradation in yeast.
    Garza RM; Tran PN; Hampton RY
    J Biol Chem; 2009 Dec; 284(51):35368-80. PubMed ID: 19776008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid-regulated degradation of HMG-CoA reductase and Insig-1 through distinct mechanisms in insect cells.
    Faulkner RA; Nguyen AD; Jo Y; DeBose-Boyd RA
    J Lipid Res; 2013 Apr; 54(4):1011-22. PubMed ID: 23403031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dislocation of HMG-CoA reductase and Insig-1, two polytopic endoplasmic reticulum proteins, en route to proteasomal degradation.
    Leichner GS; Avner R; Harats D; Roitelman J
    Mol Biol Cell; 2009 Jul; 20(14):3330-41. PubMed ID: 19458199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol.
    Sever N; Song BL; Yabe D; Goldstein JL; Brown MS; DeBose-Boyd RA
    J Biol Chem; 2003 Dec; 278(52):52479-90. PubMed ID: 14563840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct binding to sterols accelerates endoplasmic reticulum-associated degradation of HMG CoA reductase.
    Faulkner RA; Yang Y; Tsien J; Qin T; DeBose-Boyd RA
    Proc Natl Acad Sci U S A; 2024 Feb; 121(7):e2318822121. PubMed ID: 38319967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential actions of the AAA-ATPase valosin-containing protein (VCP)/p97 and the proteasome 19 S regulatory particle in sterol-accelerated, endoplasmic reticulum (ER)-associated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase.
    Morris LL; Hartman IZ; Jun DJ; Seemann J; DeBose-Boyd RA
    J Biol Chem; 2014 Jul; 289(27):19053-66. PubMed ID: 24860107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain.
    Sever N; Yang T; Brown MS; Goldstein JL; DeBose-Boyd RA
    Mol Cell; 2003 Jan; 11(1):25-33. PubMed ID: 12535518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endoplasmic reticulum-associated degradation is required for cold adaptation and regulation of sterol biosynthesis in the yeast Saccharomyces cerevisiae.
    Loertscher J; Larson LL; Matson CK; Parrish ML; Felthauser A; Sturm A; Tachibana C; Bard M; Wright R
    Eukaryot Cell; 2006 Apr; 5(4):712-22. PubMed ID: 16607018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posttranslational Regulation of HMG CoA Reductase, the Rate-Limiting Enzyme in Synthesis of Cholesterol.
    Schumacher MM; DeBose-Boyd RA
    Annu Rev Biochem; 2021 Jun; 90():659-679. PubMed ID: 34153214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An oxysterol-derived positive signal for 3-hydroxy- 3-methylglutaryl-CoA reductase degradation in yeast.
    Gardner RG; Shan H; Matsuda SP; Hampton RY
    J Biol Chem; 2001 Mar; 276(12):8681-94. PubMed ID: 11134013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia stimulates degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase through accumulation of lanosterol and hypoxia-inducible factor-mediated induction of insigs.
    Nguyen AD; McDonald JG; Bruick RK; DeBose-Boyd RA
    J Biol Chem; 2007 Sep; 282(37):27436-27446. PubMed ID: 17635920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Underlying mechanisms for sterol-induced ubiquitination and ER-associated degradation of HMG CoA reductase.
    Johnson BM; DeBose-Boyd RA
    Semin Cell Dev Biol; 2018 Sep; 81():121-128. PubMed ID: 29107682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of statins on the mevalonic acid pathway in recombinant yeast strains expressing human HMG-CoA reductase.
    Maciejak A; Leszczynska A; Warchol I; Gora M; Kaminska J; Plochocka D; Wysocka-Kapcinska M; Tulacz D; Siedlecka J; Swiezewska E; Sojka M; Danikiewicz W; Odolczyk N; Szkopinska A; Sygitowicz G; Burzynska B
    BMC Biotechnol; 2013 Aug; 13():68. PubMed ID: 24128347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ring finger protein 145 (RNF145) is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase.
    Jiang LY; Jiang W; Tian N; Xiong YN; Liu J; Wei J; Wu KY; Luo J; Shi XJ; Song BL
    J Biol Chem; 2018 Mar; 293(11):4047-4055. PubMed ID: 29374057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.