These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 23306953)
1. A turn-on NIR fluorescence and colourimetric cyanine probe for monitoring the thiol content in serum and the glutathione reductase assisted glutathione redox process. Maity D; Govindaraju T Org Biomol Chem; 2013 Apr; 11(13):2098-104. PubMed ID: 23306953 [TBL] [Abstract][Full Text] [Related]
2. Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR-excitable cyanine probe. Liu CH; Qi FP; Wen FB; Long LP; Liu AJ; Yang RH Methods Appl Fluoresc; 2018 Jan; 6(2):024001. PubMed ID: 29350185 [TBL] [Abstract][Full Text] [Related]
3. Selective detection of the reduced form of glutathione (GSH) over the oxidized (GSSG) form using a combination of glutathione reductase and a Tb(III)-cyclen maleimide based lanthanide luminescent 'switch on' assay. McMahon BK; Gunnlaugsson T J Am Chem Soc; 2012 Jul; 134(26):10725-8. PubMed ID: 22404488 [TBL] [Abstract][Full Text] [Related]
4. Site-Specific Labeling of Proteins with Near-IR Heptamethine Cyanine Dyes. Lin CM; Usama SM; Burgess K Molecules; 2018 Nov; 23(11):. PubMed ID: 30405016 [TBL] [Abstract][Full Text] [Related]
5. A selective fluorescent turn-on NIR probe for cysteine. Jiang XD; Zhang J; Shao X; Zhao W Org Biomol Chem; 2012 Mar; 10(10):1966-8. PubMed ID: 22302088 [TBL] [Abstract][Full Text] [Related]
6. A visible and near-infrared, dual emission fluorescent probe based on thiol reactivity for selectively tracking mitochondrial glutathione in vitro. Xu Y; Li R; Zhou X; Li W; Ernest U; Wan H; Li L; Chen H; Yuan Z Talanta; 2019 Dec; 205():120125. PubMed ID: 31450407 [TBL] [Abstract][Full Text] [Related]
7. Development of unique xanthene-cyanine fused near-infrared fluorescent fluorophores with superior chemical stability for biological fluorescence imaging. Chen H; Lin W; Cui H; Jiang W Chemistry; 2015 Jan; 21(2):733-45. PubMed ID: 25388080 [TBL] [Abstract][Full Text] [Related]
8. A highly sensitive two-photon fluorescent probe for glutathione with near-infrared emission at 719 nm and intracellular glutathione imaging. Huang C; Qian Y Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():68-76. PubMed ID: 30927573 [TBL] [Abstract][Full Text] [Related]
9. A novel near-infrared fluorescent probe for selectively sensing nitroreductase (NTR) in an aqueous medium. Shi Y; Zhang S; Zhang X Analyst; 2013 Apr; 138(7):1952-5. PubMed ID: 23420121 [TBL] [Abstract][Full Text] [Related]
10. Reversible near-infrared fluorescent probe introducing tellurium to mimetic glutathione peroxidase for monitoring the redox cycles between peroxynitrite and glutathione in vivo. Yu F; Li P; Wang B; Han K J Am Chem Soc; 2013 May; 135(20):7674-80. PubMed ID: 23621710 [TBL] [Abstract][Full Text] [Related]
11. A near-infrared fluorescent probe for selective detection of HClO based on Se-sensitized aggregation of heptamethine cyanine dye. Cheng G; Fan J; Sun W; Cao J; Hu C; Peng X Chem Commun (Camb); 2014 Jan; 50(8):1018-20. PubMed ID: 24310167 [TBL] [Abstract][Full Text] [Related]
12. A near-infrared ratiometric fluorescent probe for cysteine detection over glutathione indicating mitochondrial oxidative stress in vivo. Yin K; Yu F; Zhang W; Chen L Biosens Bioelectron; 2015 Dec; 74():156-64. PubMed ID: 26141101 [TBL] [Abstract][Full Text] [Related]
13. Novel water-soluble near-infrared cyanine dyes: synthesis, spectral properties, and use in the preparation of internally quenched fluorescent probes. Bouteiller C; Clavé G; Bernardin A; Chipon B; Massonneau M; Renard PY; Romieu A Bioconjug Chem; 2007; 18(4):1303-17. PubMed ID: 17583926 [TBL] [Abstract][Full Text] [Related]
14. Construction of a near-infrared fluorescence turn-on and ratiometric probe for imaging palladium in living cells. Chen H; Lin W; Yuan L Org Biomol Chem; 2013 Mar; 11(12):1938-41. PubMed ID: 23403484 [TBL] [Abstract][Full Text] [Related]
15. Development and application of a near-infrared fluorescence probe for oxidative stress based on differential reactivity of linked cyanine dyes. Oushiki D; Kojima H; Terai T; Arita M; Hanaoka K; Urano Y; Nagano T J Am Chem Soc; 2010 Mar; 132(8):2795-801. PubMed ID: 20136129 [TBL] [Abstract][Full Text] [Related]
16. Characterization of redox state and reductase activity of protein disulfide isomerase under different redox environments using a sensitive fluorescent assay. Raturi A; Mutus B Free Radic Biol Med; 2007 Jul; 43(1):62-70. PubMed ID: 17561094 [TBL] [Abstract][Full Text] [Related]
17. Near-Infrared Fluorescent Probe with High Quantum Yield and Its Application in the Selective Detection of Glutathione in Living Cells and Tissues. Xie JY; Li CY; Li YF; Fei J; Xu F; Ou-Yang J; Liu J Anal Chem; 2016 Oct; 88(19):9746-9752. PubMed ID: 27605432 [TBL] [Abstract][Full Text] [Related]
18. A highly sensitive fluorescence probe for fast thiol-quantification assay of glutathione reductase. Yi L; Li H; Sun L; Liu L; Zhang C; Xi Z Angew Chem Int Ed Engl; 2009; 48(22):4034-7. PubMed ID: 19388016 [TBL] [Abstract][Full Text] [Related]
19. A cyanine-based fluorescent sensor for detecting endogenous zinc ions in live cells and organisms. Guo Z; Kim GH; Shin I; Yoon J Biomaterials; 2012 Nov; 33(31):7818-27. PubMed ID: 22871424 [TBL] [Abstract][Full Text] [Related]
20. Sensitive near-infrared fluorescent probes for thiols based on Se-N bond cleavage: imaging in living cells and tissues. Wang R; Chen L; Liu P; Zhang Q; Wang Y Chemistry; 2012 Sep; 18(36):11343-9. PubMed ID: 22829328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]