These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 2330787)

  • 1. Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions.
    Lichtenstein SH; Carvell GE; Simons DJ
    Somatosens Mot Res; 1990; 7(1):47-65. PubMed ID: 2330787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thalamocortical response transformation in the rat vibrissa/barrel system.
    Simons DJ; Carvell GE
    J Neurophysiol; 1989 Feb; 61(2):311-30. PubMed ID: 2918357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and anatomical consequences of infraorbital nerve transection in the trigeminal ganglion and trigeminal spinal tract of the adult rat.
    Renehan WE; Klein BG; Chiaia NL; Jacquin MF; Rhoades RW
    J Neurosci; 1989 Feb; 9(2):548-57. PubMed ID: 2783964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coding of deflection velocity and amplitude by whisker primary afferent neurons: implications for higher level processing.
    Shoykhet M; Doherty D; Simons DJ
    Somatosens Mot Res; 2000; 17(2):171-80. PubMed ID: 10895887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response properties of whisker-associated trigeminothalamic neurons in rat nucleus principalis.
    Minnery BS; Simons DJ
    J Neurophysiol; 2003 Jan; 89(1):40-56. PubMed ID: 12522158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response properties of whisker-associated primary afferent neurons following infraorbital nerve transection with microsurgical repair in adult rats.
    Xiao B; Zanoun RR; Carvell GE; Simons DJ; Washington KM
    J Neurophysiol; 2016 Mar; 115(3):1458-67. PubMed ID: 26792886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of trigeminal ganglion neurons during natural whisking behaviors in the awake rat.
    Leiser SC; Moxon KA
    Neuron; 2007 Jan; 53(1):117-33. PubMed ID: 17196535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of rat trigeminal ganglion neurons to longitudinal whisker stimulation.
    Stüttgen MC; Kullmann S; Schwarz C
    J Neurophysiol; 2008 Oct; 100(4):1879-84. PubMed ID: 18684907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response properties of mouse trigeminal ganglion neurons.
    Kwegyir-Afful EE; Marella S; Simons DJ
    Somatosens Mot Res; 2008 Dec; 25(4):209-21. PubMed ID: 18989828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function relationships in rat medullary and cervical dorsal horns. I. Trigeminal primary afferents.
    Jacquin MF; Renehan WE; Mooney RD; Rhoades RW
    J Neurophysiol; 1986 Jun; 55(6):1153-86. PubMed ID: 3734853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of trigeminal ganglion cells to periodic whisker deflections.
    Fraser G; Hartings JA; Simons DJ
    Somatosens Mot Res; 2006; 23(3-4):111-8. PubMed ID: 17178546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function relationships in rat brainstem subnucleus interpolaris. I. Vibrissa primary afferents.
    Jacquin MF; Woerner D; Szczepanik AM; Riecker V; Mooney RD; Rhoades RW
    J Comp Neurol; 1986 Jan; 243(2):266-79. PubMed ID: 3944280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whisker plucking alters responses of rat trigeminal ganglion neurons.
    Shetty P; Shoykhet M; Simons DJ
    Somatosens Mot Res; 2003; 20(3-4):233-8. PubMed ID: 14675962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 2. Adaptation and coding of stimulus parameters.
    Gibson JM; Welker WI
    Somatosens Res; 1983; 1(2):95-117. PubMed ID: 6679920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whisker Vibrations and the Activity of Trigeminal Primary Afferents in Response to Airflow.
    Yu YSW; Bush NE; Hartmann MJZ
    J Neurosci; 2019 Jul; 39(30):5881-5896. PubMed ID: 31097620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two psychophysical channels of whisker deflection in rats align with two neuronal classes of primary afferents.
    Stüttgen MC; Rüter J; Schwarz C
    J Neurosci; 2006 Jul; 26(30):7933-41. PubMed ID: 16870738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust temporal coding in the trigeminal system.
    Jones LM; Depireux DA; Simons DJ; Keller A
    Science; 2004 Jun; 304(5679):1986-9. PubMed ID: 15218153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptive-field properties of rat ventral posterior medial neurons before and after selective kainic acid lesions of the trigeminal brain stem complex.
    Rhoades RW; Belford GR; Killackey HP
    J Neurophysiol; 1987 May; 57(5):1577-600. PubMed ID: 3585480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative comparison of stimulus-response relationships of vibrissa-activated neurons in subnuclei oralis and interpolaris of the rat's trigeminal sensory complex: receptive field properties and threshold distributions.
    Gibson JM
    Somatosens Res; 1987; 5(2):135-55. PubMed ID: 3423532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 1. Receptive field properties and threshold distributions.
    Gibson JM; Welker WI
    Somatosens Res; 1983; 1(1):51-67. PubMed ID: 6679913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.