These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23307902)

  • 1. Estimating selection coefficients in spatially structured populations from time series data of allele frequencies.
    Mathieson I; McVean G
    Genetics; 2013 Mar; 193(3):973-84. PubMed ID: 23307902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Natural Selection and Allele Age from Time Series Allele Frequency Data Using a Novel Likelihood-Based Approach.
    He Z; Dai X; Beaumont M; Yu F
    Genetics; 2020 Oct; 216(2):463-480. PubMed ID: 32769100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting and Quantifying Natural Selection at Two Linked Loci from Time Series Data of Allele Frequencies with Forward-in-Time Simulations.
    He Z; Dai X; Beaumont M; Yu F
    Genetics; 2020 Oct; 216(2):521-541. PubMed ID: 32826299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An approximate full-likelihood method for inferring selection and allele frequency trajectories from DNA sequence data.
    Stern AJ; Wilton PR; Nielsen R
    PLoS Genet; 2019 Sep; 15(9):e1008384. PubMed ID: 31518343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effects of Population Size Histories on Estimates of Selection Coefficients from Time-Series Genetic Data.
    Jewett EM; Steinrücken M; Song YS
    Mol Biol Evol; 2016 Nov; 33(11):3002-3027. PubMed ID: 27550904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The peppered moth and industrial melanism: evolution of a natural selection case study.
    Cook LM; Saccheri IJ
    Heredity (Edinb); 2013 Mar; 110(3):207-12. PubMed ID: 23211788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian Inference of Natural Selection from Allele Frequency Time Series.
    Schraiber JG; Evans SN; Slatkin M
    Genetics; 2016 May; 203(1):493-511. PubMed ID: 27010022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What explains rare and conspicuous colours in a snail? A test of time-series data against models of drift, migration or selection.
    Johannesson K; Butlin RK
    Heredity (Edinb); 2017 Jan; 118(1):21-30. PubMed ID: 27649616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating allele age and selection coefficient from time-serial data.
    Malaspinas AS; Malaspinas O; Evans SN; Slatkin M
    Genetics; 2012 Oct; 192(2):599-607. PubMed ID: 22851647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Approximate Markov Model for the Wright-Fisher Diffusion and Its Application to Time Series Data.
    Ferrer-Admetlla A; Leuenberger C; Jensen JD; Wegmann D
    Genetics; 2016 Jun; 203(2):831-46. PubMed ID: 27038112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring the model and onset of natural selection under varying population size from the site frequency spectrum and haplotype structure.
    Nakagome S; Hudson RR; Di Rienzo A
    Proc Biol Sci; 2019 Feb; 286(1896):20182541. PubMed ID: 30963935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling for P-value inflation in allele frequency change in experimental evolution and artificial selection experiments.
    Kemppainen P; Rønning B; Kvalnes T; Hagen IJ; Ringsby TH; Billing AM; Pärn H; Lien S; Husby A; Saether BE; Jensen H
    Mol Ecol Resour; 2017 Jul; 17(4):770-782. PubMed ID: 27813315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting Selection from Linked Sites Using an
    Galimberti M; Leuenberger C; Wolf B; Szilágyi SM; Foll M; Wegmann D
    Genetics; 2020 Dec; 216(4):1205-1215. PubMed ID: 33067324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum Likelihood Estimation of Fitness Components in Experimental Evolution.
    Liu J; Champer J; Langmüller AM; Liu C; Chung J; Reeves R; Luthra A; Lee YL; Vaughn AH; Clark AG; Messer PW
    Genetics; 2019 Mar; 211(3):1005-1017. PubMed ID: 30679262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecological genetics of adaptive color polymorphism in pocket mice: geographic variation in selected and neutral genes.
    Hoekstra HE; Drumm KE; Nachman MW
    Evolution; 2004 Jun; 58(6):1329-41. PubMed ID: 15266981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing the effects of genetic drift and fluctuating selection on genotype frequency changes in the scarlet tiger moth.
    O'Hara RB
    Proc Biol Sci; 2005 Jan; 272(1559):211-7. PubMed ID: 15695213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring the Joint Demographic History of Multiple Populations: Beyond the Diffusion Approximation.
    Jouganous J; Long W; Ragsdale AP; Gravel S
    Genetics; 2017 Jul; 206(3):1549-1567. PubMed ID: 28495960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution under multiallelic migration-selection models.
    Nagylaki T; Lou Y
    Theor Popul Biol; 2007 Aug; 72(1):21-40. PubMed ID: 17470373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allele frequencies and selection coefficients in locally adapted populations.
    Sibly RM; Curnow RN
    J Theor Biol; 2023 May; 565():111463. PubMed ID: 36914112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring the timing and strength of natural selection and gene migration in the evolution of chicken from ancient DNA data.
    Lyu W; Dai X; Beaumont M; Yu F; He Z
    Mol Ecol Resour; 2022 May; 22(4):1362-1379. PubMed ID: 34783162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.