BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2330802)

  • 1. Intestinal absorption of cationic and anionic ferric colloids and complexes: biochemical, histochemical and morphological observations in rats.
    Akita M; Seno S; Awai M
    Nihon Ketsueki Gakkai Zasshi; 1990 Feb; 53(1):1-13. PubMed ID: 2330802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine-granular cationic iron colloid. Its preparation, physicochemical characteristics and histochemical use for the detection of ionized anionic groups.
    Seno S; Akita M; Ono T; Tsujii T
    Histochemistry; 1985; 82(4):307-12. PubMed ID: 2409058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cationic cacodylate iron colloid for the detection of anionic sites on cell surface and the histochemical stain of acid mucopolysaccharides.
    Seno S; Tsujii T; Ono T; Ukita S
    Histochemistry; 1983; 78(1):27-31. PubMed ID: 6223903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for regulatory control of iron uptake from ferric maltol across the small intestine of the rat.
    Barrand MA; Callingham BA
    Br J Pharmacol; 1991 Feb; 102(2):408-14. PubMed ID: 2015422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociation of a ferric maltol complex and its subsequent metabolism during absorption across the small intestine of the rat.
    Barrand MA; Callingham BA; Dobbin P; Hider RC
    Br J Pharmacol; 1991 Mar; 102(3):723-9. PubMed ID: 1364845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mobilisation of recently absorbed 59Fe in ex vivo perfused rat duodena and the influence of iron status and subsequently absorbed chelators.
    Ettle T; Elsenhans B; Windisch W; Srai SK; Schümann K
    J Trace Elem Med Biol; 2006; 19(4):231-41. PubMed ID: 16443171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioavailability of trivalent iron in oral iron preparations. Therapeutic efficacy and iron absorption from simple ferric compounds and high- or low-molecular weight ferric hydroxide-carbohydrate complexes.
    Heinrich HC
    Arzneimittelforschung; 1975 Mar; 25(3):420-6. PubMed ID: 1174047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular charge and cellular surface charge in adhesion, ingestion, and blood vessel leakage.
    Seno S; Ono T; Tsujii T
    Ann N Y Acad Sci; 1983; 416():410-25. PubMed ID: 6587814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of intestinal iron absorption on the valency state of iron.
    Wollenberg P; Rummel W
    Naunyn Schmiedebergs Arch Pharmacol; 1987 Nov; 336(5):578-82. PubMed ID: 3125486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intestinal absorption of 59Fe from neutron-activated commercial oral iron(III)-citrate and iron(III)-hydroxide-polymaltose complexes in man.
    Heinrich HC
    Arzneimittelforschung; 1987 Jan; 37(1A):105-7. PubMed ID: 3566863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of non-haem iron absorption in non-anaemic rats using 59Fe: can the Fe content of duodenal mucosal cells cause lumen or mucosal radioisotope dilution, or both, thus resulting in the underestimation of Fe absorption?
    Wright AJ; Southon S; Fairweather-Tait SJ
    Br J Nutr; 1989 Nov; 62(3):719-27. PubMed ID: 2605161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modified method of fine-granular cationic iron colloid preparation: its use in light and electron microscopic detection of anionic sites in the rat kidney glomerulus and certain other tissues.
    Murakami T; Taguchi T; Ohtsuka A; Sano K; Kaneshige T; Owen RL; Jones AL
    Arch Histol Jpn; 1986 Mar; 49(1):13-23. PubMed ID: 3089191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferric cacodylate efficiently stimulates growth of rat renal glomerular epithelial cells in vitro.
    Yamada M; Moritoh C; Okigaki T
    Cytotechnology; 1990 May; 3(3):245-51. PubMed ID: 22358774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of external gamma-irradiation on 59Fe release in vitro from alveolar macrophages previously having ingested 59Fe-iron hydroxide colloid.
    Takahashi S; Kubota Y; Sato H
    J Radiat Res; 1990 Sep; 31(3):263-9. PubMed ID: 2246751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Difference between C3H mice and Wistar rats in the effect of external gamma-irradiation on 59Fe release from alveolar macrophage-ingested 59Fe-iron hydroxide colloid.
    Takahashi S; Kubota Y; Sato H
    J Radiat Res; 1991 Sep; 32(3):262-6. PubMed ID: 1791589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the absorption of divalent and trivalent iron in living rats.
    Schäfer S; Forth W
    Arzneimittelforschung; 1984; 34(11):1570-4. PubMed ID: 6543132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferric iron absorption in rats: relationship to iron status, endogenous sulfhydryl and other redox components in the intestinal lumen.
    Wien EM; Van Campen DR
    J Nutr; 1991 Jun; 121(6):825-31. PubMed ID: 2033467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of dietary iron deficiency and tungsten supplementation on 59Fe absorption and gastric retention from 59Fe compounds in rats.
    Shears GE; Neale RJ; Ledward DA
    Br J Nutr; 1989 May; 61(3):573-81. PubMed ID: 2758011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron dissociates from the NaFeEDTA complex prior to or during intestinal absorption in rats.
    Zhu L; Yeung CK; Glahn RP; Miller DD
    J Agric Food Chem; 2006 Oct; 54(20):7929-34. PubMed ID: 17002472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioavailability of iron and cyanide from 59Fe- and 14C-labelled hexacyanoferrates(II) in rats.
    Nielsen P; Dresow B; Fischer R; Heinrich HC
    Z Naturforsch C J Biosci; 1990 Jun; 45(6):681-90. PubMed ID: 2400471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.