These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 23311327)
1. Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron. Johnson RL; Nurmi JT; O'Brien Johnson GS; Fan D; O'Brien Johnson RL; Shi Z; Salter-Blanc AJ; Tratnyek PG; Lowry GV Environ Sci Technol; 2013 Feb; 47(3):1573-80. PubMed ID: 23311327 [TBL] [Abstract][Full Text] [Related]
2. Transport of polymer stabilized nano-scale zero-valent iron in porous media. Mondal PK; Furbacher PD; Cui Z; Krol MM; Sleep BE J Contam Hydrol; 2018 May; 212():65-77. PubMed ID: 29223368 [TBL] [Abstract][Full Text] [Related]
4. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater. Busch J; Meißner T; Potthoff A; Bleyl S; Georgi A; Mackenzie K; Trabitzsch R; Werban U; Oswald SE J Contam Hydrol; 2015 Oct; 181():59-68. PubMed ID: 25864966 [TBL] [Abstract][Full Text] [Related]
5. Reduced transport potential of a palladium-doped zero valent iron nanoparticle in a water saturated loamy sand. Basnet M; Di Tommaso C; Ghoshal S; Tufenkji N Water Res; 2015 Jan; 68():354-63. PubMed ID: 25462742 [TBL] [Abstract][Full Text] [Related]
6. Field Deployable Chemical Redox Probe for Quantitative Characterization of Carboxymethylcellulose Modified Nano Zerovalent Iron. Fan D; Chen S; Johnson RL; Tratnyek PG Environ Sci Technol; 2015 Sep; 49(17):10589-97. PubMed ID: 26218836 [TBL] [Abstract][Full Text] [Related]
7. Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Raychoudhury T; Tufenkji N; Ghoshal S Water Res; 2014 Mar; 50():80-9. PubMed ID: 24361705 [TBL] [Abstract][Full Text] [Related]
8. Subsurface transport of carboxymethyl cellulose (CMC)-stabilized nanoscale zero valent iron (nZVI): Numerical and statistical analysis. Asad MA; Khan UT; Krol MM J Contam Hydrol; 2021 Dec; 243():103870. PubMed ID: 34418819 [TBL] [Abstract][Full Text] [Related]
9. A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection. Krol MM; Oleniuk AJ; Kocur CM; Sleep BE; Bennett P; Xiong Z; O'Carroll DM Environ Sci Technol; 2013 Jul; 47(13):7332-40. PubMed ID: 23725414 [TBL] [Abstract][Full Text] [Related]
10. Characterization of nZVI mobility in a field scale test. Kocur CM; Chowdhury AI; Sakulchaicharoen N; Boparai HK; Weber KP; Sharma P; Krol MM; Austrins L; Peace C; Sleep BE; O'Carroll DM Environ Sci Technol; 2014; 48(5):2862-9. PubMed ID: 24479900 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the transport of the aggregates of nanoscale zerovalent iron under vertical and horizontal flow. Li J; Ghoshal S Chemosphere; 2016 Feb; 144():1398-407. PubMed ID: 26498094 [TBL] [Abstract][Full Text] [Related]
12. Fate and transport of sulfidated nano zerovalent iron (S-nZVI): A field study. Nunez Garcia A; Boparai HK; de Boer CV; Chowdhury AIA; Kocur CMD; Austrins LM; Herrera J; O'Carroll DM Water Res; 2020 Mar; 170():115319. PubMed ID: 31790885 [TBL] [Abstract][Full Text] [Related]
13. Transport of carboxymethyl cellulose-coated zerovalent iron nanoparticles in a sand tank: Effects of sand grain size, nanoparticle concentration and injection velocity. Li J; Rajajayavel SRC; Ghoshal S Chemosphere; 2016 May; 150():8-16. PubMed ID: 26891351 [TBL] [Abstract][Full Text] [Related]
14. Deposition of carboxymethylcellulose-coated zero-valent iron nanoparticles onto silica: roles of solution chemistry and organic molecules. Fatisson J; Ghoshal S; Tufenkji N Langmuir; 2010 Aug; 26(15):12832-40. PubMed ID: 20593855 [TBL] [Abstract][Full Text] [Related]
15. Impact of nZVI stability on mobility in porous media. Kocur CM; O'Carroll DM; Sleep BE J Contam Hydrol; 2013 Feb; 145():17-25. PubMed ID: 23261906 [TBL] [Abstract][Full Text] [Related]
16. Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Raychoudhury T; Tufenkji N; Ghoshal S Water Res; 2012 Apr; 46(6):1735-44. PubMed ID: 22244967 [TBL] [Abstract][Full Text] [Related]
17. Effects of nano zero-valent iron on oxidation-reduction potential. Shi Z; Nurmi JT; Tratnyek PG Environ Sci Technol; 2011 Feb; 45(4):1586-92. PubMed ID: 21204580 [TBL] [Abstract][Full Text] [Related]
18. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. He F; Zhao D; Paul C Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501 [TBL] [Abstract][Full Text] [Related]
19. Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation. Shi Z; Fan D; Johnson RL; Tratnyek PG; Nurmi JT; Wu Y; Williams KH J Contam Hydrol; 2015 Oct; 181():17-35. PubMed ID: 25841976 [TBL] [Abstract][Full Text] [Related]
20. Contributions of Abiotic and Biotic Dechlorination Following Carboxymethyl Cellulose Stabilized Nanoscale Zero Valent Iron Injection. Kocur CM; Lomheim L; Boparai HK; Chowdhury AI; Weber KP; Austrins LM; Edwards EA; Sleep BE; O'Carroll DM Environ Sci Technol; 2015 Jul; 49(14):8648-56. PubMed ID: 26090687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]