These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 23311382)
1. Role of optical coefficients and healthy tissue-sparing characteristics in gold nanorod-assisted thermal therapy. Soni S; Tyagi H; Taylor RA; Kumar A Int J Hyperthermia; 2013; 29(1):87-97. PubMed ID: 23311382 [TBL] [Abstract][Full Text] [Related]
2. Nanotechnology combined therapy: tyrosine kinase-bound gold nanorod and laser thermal ablation produce a synergistic higher treatment response of renal cell carcinoma in a murine model. Liu J; Abshire C; Carry C; Sholl AB; Mandava SH; Datta A; Ranjan M; Callaghan C; Peralta DV; Williams KS; Lai WR; Abdel-Mageed AB; Tarr M; Lee BR BJU Int; 2017 Feb; 119(2):342-348. PubMed ID: 27431021 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the RF ablation-induced 'oven effect': the importance of background tissue thermal conductivity on tissue heating. Liu Z; Ahmed M; Weinstein Y; Yi M; Mahajan RL; Goldberg SN Int J Hyperthermia; 2006 Jun; 22(4):327-42. PubMed ID: 16754353 [TBL] [Abstract][Full Text] [Related]
4. Investigation on nanoparticle distribution for thermal ablation of a tumour subjected to nanoparticle assisted thermal therapy. Soni S; Tyagi H; Taylor RA; Kumar A J Therm Biol; 2014 Jul; 43():70-80. PubMed ID: 24956960 [TBL] [Abstract][Full Text] [Related]
5. Longitudinal surface plasmon resonance based gold nanorod biosensors for mass spectrometry. Castellana ET; Gamez RC; Gómez ME; Russell DH Langmuir; 2010 Apr; 26(8):6066-70. PubMed ID: 20302283 [TBL] [Abstract][Full Text] [Related]
6. Photon to thermal response of a single patterned gold nanorod cluster under near-infrared laser irradiation. Jo W; Freedman K; Yi DK; Bose RK; Lau KK; Solomon SD; Kim MJ Biofabrication; 2011 Mar; 3(1):015002. PubMed ID: 21245521 [TBL] [Abstract][Full Text] [Related]
7. Development of a computational simulation tool to design a protocol for treating prostate tumours using transurethral laser photothermal therapy. Manuchehrabadi N; Zhu L Int J Hyperthermia; 2014 Sep; 30(6):349-61. PubMed ID: 25244058 [TBL] [Abstract][Full Text] [Related]
8. Controlled-release system of single-stranded DNA triggered by the photothermal effect of gold nanorods and its in vivo application. Yamashita S; Fukushima H; Akiyama Y; Niidome Y; Mori T; Katayama Y; Niidome T Bioorg Med Chem; 2011 Apr; 19(7):2130-5. PubMed ID: 21421321 [TBL] [Abstract][Full Text] [Related]
9. Computational simulation of temperature elevations in tumors using Monte Carlo method and comparison to experimental measurements in laser photothermal therapy. Manuchehrabadi N; Chen Y; Lebrun A; Ma R; Zhu L J Biomech Eng; 2013 Dec; 135(12):121007. PubMed ID: 24026290 [TBL] [Abstract][Full Text] [Related]
10. Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. Ni W; Kou X; Yang Z; Wang J ACS Nano; 2008 Apr; 2(4):677-86. PubMed ID: 19206598 [TBL] [Abstract][Full Text] [Related]
11. Effects of gold nanorod concentration on the depth-related temperature increase during hyperthermic ablation. Jang B; Kim YS; Choi Y Small; 2011 Jan; 7(2):265-70. PubMed ID: 21213392 [TBL] [Abstract][Full Text] [Related]
12. Heat shock protein expression and temperature distribution in prostate tumours treated with laser irradiation and nanoshells. Rylander MN; Stafford RJ; Hazle J; Whitney J; Diller KR Int J Hyperthermia; 2011; 27(8):791-801. PubMed ID: 22098363 [TBL] [Abstract][Full Text] [Related]
13. Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas. Grosenick D; Wabnitz H; Moesta KT; Mucke J; Schlag PM; Rinneberg H Phys Med Biol; 2005 Jun; 50(11):2451-68. PubMed ID: 15901948 [TBL] [Abstract][Full Text] [Related]
14. Gold nanorod-facilitated localized heating of droplets in microfluidic chips. Li Z; Wang P; Tong L; Zhang L Opt Express; 2013 Jan; 21(1):1281-6. PubMed ID: 23389021 [TBL] [Abstract][Full Text] [Related]
16. Poly(ethylene glycol)-modified gold nanorods as a photothermal nanodevice for hyperthermia. Niidome T; Akiyama Y; Yamagata M; Kawano T; Mori T; Niidome Y; Katayama Y J Biomater Sci Polym Ed; 2009; 20(9):1203-15. PubMed ID: 19520008 [TBL] [Abstract][Full Text] [Related]
17. Optimization in interstitial plasmonic photothermal therapy for treatment planning. Kannadorai RK; Liu Q Med Phys; 2013 Oct; 40(10):103301. PubMed ID: 24089931 [TBL] [Abstract][Full Text] [Related]
18. Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods. Huang H; Tang C; Zeng Y; Yu X; Liao B; Xia X; Yi P; Chu PK Colloids Surf B Biointerfaces; 2009 Jun; 71(1):96-101. PubMed ID: 19211228 [TBL] [Abstract][Full Text] [Related]
19. Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods. Yamashita S; Fukushima H; Niidome Y; Mori T; Katayama Y; Niidome T Langmuir; 2011 Dec; 27(23):14621-6. PubMed ID: 21988322 [TBL] [Abstract][Full Text] [Related]
20. Role of periodic irradiation and incident beam radius for plasmonic photothermal therapy of subsurface tumors. Shaw AK; Soni S J Therm Biol; 2024 Apr; 121():103859. PubMed ID: 38714147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]