These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 23311424)
1. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. McCluskey CC Math Biosci Eng; 2012 Oct; 9(4):819-41. PubMed ID: 23311424 [TBL] [Abstract][Full Text] [Related]
2. The impact of migrant workers on the tuberculosis transmission: general models and a case study for China. Liu L; Wu J; Zhao XQ Math Biosci Eng; 2012 Oct; 9(4):785-807. PubMed ID: 23311422 [TBL] [Abstract][Full Text] [Related]
3. The stability analysis of an SVEIR model with continuous age-structure in the exposed and infectious classes. Wang J; Zhang R; Kuniya T J Biol Dyn; 2015; 9():73-101. PubMed ID: 25689314 [TBL] [Abstract][Full Text] [Related]
4. Sveir epidemiological model with varying infectivity and distributed delays. Wang J; Huang G; Takeuchi Y; Liu S Math Biosci Eng; 2011 Jul; 8(3):875-88. PubMed ID: 21675816 [TBL] [Abstract][Full Text] [Related]
5. Modeling the effects of carriers on transmission dynamics of infectious diseases. Kalajdzievska D; Li MY Math Biosci Eng; 2011 Jul; 8(3):711-22. PubMed ID: 21675806 [TBL] [Abstract][Full Text] [Related]
6. Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse. Ren S Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1337-1360. PubMed ID: 29161864 [TBL] [Abstract][Full Text] [Related]
7. Global properties of a delayed SIR epidemic model with multiple parallel infectious stages. Wang X; Liu S Math Biosci Eng; 2012 Jul; 9(3):685-95. PubMed ID: 22881032 [TBL] [Abstract][Full Text] [Related]
8. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages. Korobeinikov A Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976 [TBL] [Abstract][Full Text] [Related]
9. Global stability for epidemic model with constant latency and infectious periods. Huang G; Beretta E; Takeuchi Y Math Biosci Eng; 2012 Apr; 9(2):297-312. PubMed ID: 22901066 [TBL] [Abstract][Full Text] [Related]
10. Epidemic models with differential susceptibility and staged progression and their dynamics. Hyman JM; Li J Math Biosci Eng; 2009 Apr; 6(2):321-32. PubMed ID: 19364155 [TBL] [Abstract][Full Text] [Related]
11. Epidemic threshold of the susceptible-infected-susceptible model on complex networks. Lee HK; Shim PS; Noh JD Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062812. PubMed ID: 23848734 [TBL] [Abstract][Full Text] [Related]
12. Global stability of an epidemic model with delay and general nonlinear incidence. McCluskey CC Math Biosci Eng; 2010 Oct; 7(4):837-50. PubMed ID: 21077711 [TBL] [Abstract][Full Text] [Related]
13. An SEIR epidemic model with constant latency time and infectious period. Beretta E; Breda D Math Biosci Eng; 2011 Oct; 8(4):931-52. PubMed ID: 21936593 [TBL] [Abstract][Full Text] [Related]
14. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Melnik AV; Korobeinikov A Math Biosci Eng; 2013 Apr; 10(2):369-78. PubMed ID: 23458305 [TBL] [Abstract][Full Text] [Related]
15. Global stability for an SEI model of infectious disease with age structure and immigration of infecteds. McCluskey CC Math Biosci Eng; 2016 Apr; 13(2):381-400. PubMed ID: 27105982 [TBL] [Abstract][Full Text] [Related]
16. Stability and bifurcations in an epidemic model with varying immunity period. Blyuss KB; Kyrychko YN Bull Math Biol; 2010 Feb; 72(2):490-505. PubMed ID: 19898905 [TBL] [Abstract][Full Text] [Related]
17. Dynamic analysis of an SEIR model with distinct incidence for exposed and infectives. Li J; Cui N ScientificWorldJournal; 2013; 2013():871393. PubMed ID: 23766718 [TBL] [Abstract][Full Text] [Related]
18. An SIS patch model with variable transmission coefficients. Gao D; Ruan S Math Biosci; 2011 Aug; 232(2):110-5. PubMed ID: 21619886 [TBL] [Abstract][Full Text] [Related]
19. Mathematical modelling and control of echinococcus in Qinghai province, China. Wu L; Song B; Du W; Lou J Math Biosci Eng; 2013 Apr; 10(2):425-44. PubMed ID: 23458307 [TBL] [Abstract][Full Text] [Related]
20. An age-structured vector-borne disease model with horizontal transmission in the host. Wang X; Chen Y Math Biosci Eng; 2018 Oct; 15(5):1099-1116. PubMed ID: 30380301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]