These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 23311546)
21. Species Abundance and Identification of Forensically Important Flies of Saudi Arabia by DNA Barcoding. Mashaly A; Alajmi R; Mustafa AE; Rady A; Alkhedir H J Med Entomol; 2017 Jul; 54(4):837-843. PubMed ID: 28399228 [TBL] [Abstract][Full Text] [Related]
22. DNA extraction and barcode identification of development stages of forensically important flies in the Czech Republic. Olekšáková T; Žurovcová M; Klimešová V; Barták M; Šuláková H Mitochondrial DNA A DNA Mapp Seq Anal; 2018 Apr; 29(3):427-430. PubMed ID: 28325121 [TBL] [Abstract][Full Text] [Related]
23. Identification of Forensically Important Calliphoridae and Sarcophagidae Species Collected in Korea Using SNaPshot Multiplex System Targeting the Cytochrome c Oxidase Subunit I Gene. Park JH; Shin SE; Ko KS; Park SH Biomed Res Int; 2018; 2018():2953892. PubMed ID: 29682531 [TBL] [Abstract][Full Text] [Related]
24. Species-level identification of the blowfly Chrysomya megacephala and other Diptera in China by DNA barcoding. Qiu D; Cook CE; Yue Q; Hu J; Wei X; Chen J; Liu D; Wu K Genome; 2017 Feb; 60(2):158-168. PubMed ID: 28044459 [TBL] [Abstract][Full Text] [Related]
25. Practical applications of molecular biological species identification of forensically important flies. Saigusa K; Matsumasa M; Yashima Y; Takamiya M; Aoki Y Leg Med (Tokyo); 2009 Apr; 11 Suppl 1():S344-7. PubMed ID: 19264529 [TBL] [Abstract][Full Text] [Related]
26. [The study of the sequence of molecular markers of mitochondrial DNA of Sarcosaphagous Flies]. Cai JF; Ying BW; Tao T Fa Yi Xue Za Zhi; 2005 Feb; 21(1):68-72. PubMed ID: 15895813 [TBL] [Abstract][Full Text] [Related]
27. DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Meier R; Shiyang K; Vaidya G; Ng PK Syst Biol; 2006 Oct; 55(5):715-28. PubMed ID: 17060194 [TBL] [Abstract][Full Text] [Related]
28. DNA-based identification of forensically important Lucilia (Diptera: Calliphoridae) in the continental United States. DeBry RW; Timm A; Wong ES; Stamper T; Cookman C; Dahlem GA J Forensic Sci; 2013 Jan; 58(1):73-8. PubMed ID: 22563786 [TBL] [Abstract][Full Text] [Related]
29. DNA barcoding for the identification of sand fly species (Diptera, Psychodidae, Phlebotominae) in Colombia. Contreras Gutiérrez MA; Vivero RJ; Vélez ID; Porter CH; Uribe S PLoS One; 2014; 9(1):e85496. PubMed ID: 24454877 [TBL] [Abstract][Full Text] [Related]
30. Discrimination of Cricotopus species (Diptera: Chironomidae) by DNA barcoding. Sinclair CS; Gresens SE Bull Entomol Res; 2008 Dec; 98(6):555-63. PubMed ID: 18590594 [TBL] [Abstract][Full Text] [Related]
31. Revision of the subgenus Episyrphus (Episyrphus) Matsumura (Diptera: Syrphidae) in Australia. Wright SG; Skevington JH Zootaxa; 2013; 3683():51-64. PubMed ID: 25250433 [TBL] [Abstract][Full Text] [Related]
32. Molecular identification of two species of myiasis-causing Cuterebra by multiplex PCR and RFLP. Noël S; Tessier N; Angers B; Wood DM; Lapointe FJ Med Vet Entomol; 2004 Jun; 18(2):161-6. PubMed ID: 15189241 [TBL] [Abstract][Full Text] [Related]
33. New records and DNA barcoding of deer flies, Chrysops (Diptera: Tabanidae) in Thailand. Changbunjong T; Weluwanarak T; Sedwisai P; Ruangsittichai J; Duvallet G; Chareonviriyaphap T Acta Trop; 2020 Oct; 210():105532. PubMed ID: 32497542 [TBL] [Abstract][Full Text] [Related]
34. Oestrosis in Asiatic ibex (Capra sibirica): a case report and molecular characterization of larvae. Sánchez A; Caparrós N; Ostrowski S; Sarasa M; Pérez JM Vet Parasitol; 2017 Mar; 236():55-57. PubMed ID: 28288765 [TBL] [Abstract][Full Text] [Related]
35. Molecular identification of forensically important blowfly species (Diptera: Calliphoridae) from Germany. Reibe S; Schmitz J; Madea B Parasitol Res; 2009 Dec; 106(1):257-61. PubMed ID: 19862555 [TBL] [Abstract][Full Text] [Related]
36. Phylogenetic analysis of the genus Cheilosia (Diptera, Syrphidae) using mitochondrial COI sequence data. Ståhls G; Nyblom K Mol Phylogenet Evol; 2000 May; 15(2):235-41. PubMed ID: 10837153 [TBL] [Abstract][Full Text] [Related]
37. The use of mitochondrial cytochrome oxidase I gene (COI) to differentiate two UK blowfly species -- Calliphora vicina and Calliphora vomitoria. Ames C; Turner B; Daniel B Forensic Sci Int; 2006 Dec; 164(2-3):179-82. PubMed ID: 16504435 [TBL] [Abstract][Full Text] [Related]
38. Patterns of evolution of mitochondrial cytochrome c oxidase I and II DNA and implications for DNA barcoding. Roe AD; Sperling FA Mol Phylogenet Evol; 2007 Jul; 44(1):325-45. PubMed ID: 17270468 [TBL] [Abstract][Full Text] [Related]
39. [Molecular criteria in insects systematics: bar-coding gene COI range of variability as a taxonomic criterion for genus, tribe, and subfamily, with Chironominae and Orthocladiinae midges (Chironomidae, Diptera) as a case study]. Polukonova NV; Demin AG; Miuge NS Zh Obshch Biol; 2013; 74(1):66-76. PubMed ID: 23659114 [TBL] [Abstract][Full Text] [Related]
40. Forest farming of shiitake mushrooms: an integrated evaluation of management practices. Bruhn JN; Mihail JD; Pickens JB Bioresour Technol; 2009 Dec; 100(24):6472-80. PubMed ID: 19640705 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]