These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23311640)

  • 1. Performance of different force fields in force probe simulations.
    Schlesier T; Diezemann G
    J Phys Chem B; 2013 Feb; 117(6):1862-71. PubMed ID: 23311640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible hydrogen bond network dynamics: molecular dynamics simulations of calix[4]arene-catenanes.
    Schlesier T; Metzroth T; Janshoff A; Gauss J; Diezemann G
    J Phys Chem B; 2011 May; 115(20):6445-54. PubMed ID: 21539328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force probe simulations of a reversibly rebinding system: Impact of pulling device stiffness.
    Jaschonek S; Diezemann G
    J Chem Phys; 2017 Mar; 146(12):124901. PubMed ID: 28388162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of two different force fields on structural and thermodynamics character of H1 peptide via molecular dynamics simulations.
    Cao Z; Wang J
    J Biomol Struct Dyn; 2010 Apr; 27(5):651-61. PubMed ID: 20085382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic force spectroscopy: Analysis of reversible bond-breaking dynamics.
    Diezemann G; Janshoff A
    J Chem Phys; 2008 Aug; 129(8):084904. PubMed ID: 19044850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics of DNA: comparison of force fields and terminal nucleotide definitions.
    Ricci CG; de Andrade AS; Mottin M; Netz PA
    J Phys Chem B; 2010 Aug; 114(30):9882-93. PubMed ID: 20614923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why the OPLS-AA force field cannot produce the β-hairpin structure of H1 peptide in solution when comparing with the GROMOS 43A1 force field?
    Cao Z; Liu L; Wang J
    J Biomol Struct Dyn; 2011 Dec; 29(3):527-39. PubMed ID: 22066538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparative Study for Molecular Dynamics Simulations of Liquid Benzene.
    Fu CF; Tian SX
    J Chem Theory Comput; 2011 Jul; 7(7):2240-52. PubMed ID: 26606493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical and Structural Tuning of Reversible Hydrogen Bonding in Interlocked Calixarene Nanocapsules.
    Jaschonek S; Schäfer K; Diezemann G
    J Phys Chem B; 2019 Jun; 123(22):4688-4694. PubMed ID: 31070922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of nine condensed-phase force fields of the GROMOS, CHARMM, OPLS, AMBER, and OpenFF families against experimental cross-solvation free energies.
    Kashefolgheta S; Wang S; Acree WE; Hünenberger PH
    Phys Chem Chem Phys; 2021 Jun; 23(23):13055-13074. PubMed ID: 34105547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of structure and dynamics of organic molecular crystals.
    Nemkevich A; Bürgi HB; Spackman MA; Corry B
    Phys Chem Chem Phys; 2010 Dec; 12(45):14916-29. PubMed ID: 20944862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of the Generalized Force Fields GAFF, CGenFF, OPLS-AA, and PRODRGFF by Testing Against Experimental Osmotic Coefficient Data for Small Drug-Like Molecules.
    Zhu S
    J Chem Inf Model; 2019 Oct; 59(10):4239-4247. PubMed ID: 31557024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of biomolecular force fields for molecular dynamics simulations in a protein crystal.
    Hu Z; Jiang J
    J Comput Chem; 2010 Jan; 31(2):371-80. PubMed ID: 19479737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved OPLS-AA force field for carbohydrates.
    Kony D; Damm W; Stoll S; Van Gunsteren WF
    J Comput Chem; 2002 Nov; 23(15):1416-29. PubMed ID: 12370944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modern protein force fields behave comparably in molecular dynamics simulations.
    Price DJ; Brooks CL
    J Comput Chem; 2002 Aug; 23(11):1045-57. PubMed ID: 12116391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward realistic computer modeling of paraffin-based composite materials: critical assessment of atomic-scale models of paraffins.
    Glova AD; Volgin IV; Nazarychev VM; Larin SV; Lyulin SV; Gurtovenko AA
    RSC Adv; 2019 Nov; 9(66):38834-38847. PubMed ID: 35540183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of protein force fields for molecular dynamics simulations.
    Guvench O; MacKerell AD
    Methods Mol Biol; 2008; 443():63-88. PubMed ID: 18446282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of GAFF and OPLS Force Fields for Urea: Crystal and Aqueous Solution Properties.
    Anker S; McKechnie D; Mulheran P; Sefcik J; Johnston K
    Cryst Growth Des; 2024 Jan; 24(1):143-158. PubMed ID: 38188266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating nonpolarizable nucleic acid force fields: a systematic comparison of the nucleobases hydration free energies and chloroform-to-water partition coefficients.
    Wolf MG; Groenhof G
    J Comput Chem; 2012 Oct; 33(28):2225-32. PubMed ID: 22782700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.