These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Characterization of a defensin from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Boulanger N; Lowenberger C; Volf P; Ursic R; Sigutova L; Sabatier L; Svobodova M; Beverley SM; Späth G; Brun R; Pesson B; Bulet P Infect Immun; 2004 Dec; 72(12):7140-6. PubMed ID: 15557638 [TBL] [Abstract][Full Text] [Related]
5. Colonisation resistance in the sand fly gut: Leishmania protects Lutzomyia longipalpis from bacterial infection. Sant'Anna MR; Diaz-Albiter H; Aguiar-Martins K; Al Salem WS; Cavalcante RR; Dillon VM; Bates PA; Genta FA; Dillon RJ Parasit Vectors; 2014 Jul; 7():329. PubMed ID: 25051919 [TBL] [Abstract][Full Text] [Related]
6. Pathogen-associated molecular patterns (PAMPs) derived from Leishmania and bacteria increase gene expression of antimicrobial peptides and gut surface proteins in sand flies. Vomáčková Kykalová B; Sassù F; Dutra-Rêgo F; Soares RP; Volf P; Loza Telleria E Int J Parasitol; 2024 Aug; 54(10):485-495. PubMed ID: 38626865 [TBL] [Abstract][Full Text] [Related]
7. The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum. Kelly PH; Bahr SM; Serafim TD; Ajami NJ; Petrosino JF; Meneses C; Kirby JR; Valenzuela JG; Kamhawi S; Wilson ME mBio; 2017 Jan; 8(1):. PubMed ID: 28096483 [TBL] [Abstract][Full Text] [Related]
8. The sandfly Lutzomyia longipalpis LL5 embryonic cell line has active Toll and Imd pathways and shows immune responses to bacteria, yeast and Leishmania. Tinoco-Nunes B; Telleria EL; da Silva-Neves M; Marques C; Azevedo-Brito DA; Pitaluga AN; Traub-Csekö YM Parasit Vectors; 2016 Apr; 9():222. PubMed ID: 27098567 [TBL] [Abstract][Full Text] [Related]
9. Significance of bacteria in oviposition and larval development of the sand fly Lutzomyia longipalpis. Peterkova-Koci K; Robles-Murguia M; Ramalho-Ortigao M; Zurek L Parasit Vectors; 2012 Jul; 5():145. PubMed ID: 22827861 [TBL] [Abstract][Full Text] [Related]
10. The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies. Jochim RC; Teixeira CR; Laughinghouse A; Mu J; Oliveira F; Gomes RB; Elnaiem DE; Valenzuela JG BMC Genomics; 2008 Jan; 9():15. PubMed ID: 18194529 [TBL] [Abstract][Full Text] [Related]
11. Evidence of a conserved mammalian immunosuppression mechanism in Telleria EL; Tinoco-Nunes B; Forrest DM; Di-Blasi T; Leštinová T; Chang KP; Volf P; Pitaluga AN; Traub-Csekö YM Front Immunol; 2023; 14():1162596. PubMed ID: 38022562 [TBL] [Abstract][Full Text] [Related]
12. Transmission blocking sugar baits for the control of Leishmania development inside sand flies using environmentally friendly beta-glycosides and their aglycones. Ferreira TN; Pita-Pereira D; Costa SG; Brazil RP; Moraes CS; Díaz-Albiter HM; Genta FA Parasit Vectors; 2018 Nov; 11(1):614. PubMed ID: 30501613 [TBL] [Abstract][Full Text] [Related]
13. Di-Blasi T; Telleria EL; Marques C; Couto RM; da Silva-Neves M; Jancarova M; Volf P; Tempone AJ; Traub-Csekö YM Front Cell Infect Microbiol; 2019; 9():71. PubMed ID: 30972305 [TBL] [Abstract][Full Text] [Related]
14. High molecular prevalence of Leishmania in phlebotomine sand flies fed on chicken blood in Brazil. de Sousa Ferreira T; Timbó RV; Minuzzi-Souza TTC; de Almeida Rocha D; Neiva M; de Albuquerque Ribeiro J; de Almeida PS; Hecht M; Nitz N; Gurgel-Gonçalves R Vet Parasitol; 2018 Aug; 259():80-84. PubMed ID: 30056989 [TBL] [Abstract][Full Text] [Related]
15. Wolbachia introduction into Lutzomyia longipalpis (Diptera: Psychodidae) cell lines and its effects on immune-related gene expression and interaction with Leishmania infantum. da Silva Gonçalves D; Iturbe-Ormaetxe I; Martins-da-Silva A; Telleria EL; Rocha MN; Traub-Csekö YM; O'Neill SL; Sant'Anna MRV; Moreira LA Parasit Vectors; 2019 Jan; 12(1):33. PubMed ID: 30646951 [TBL] [Abstract][Full Text] [Related]
16. Real-time PCR to assess the Leishmania load in Lutzomyia longipalpis sand flies: screening of target genes and assessment of quantitative methods. Bezerra-Vasconcelos DR; Melo LM; Albuquerque ÉS; Luciano MC; Bevilaqua CM Exp Parasitol; 2011 Nov; 129(3):234-9. PubMed ID: 21864530 [TBL] [Abstract][Full Text] [Related]
17. Detection of multiple circulating Leishmania species in Lutzomyia longipalpis in the city of Governador Valadares, southeastern Brazil. Cardoso MS; Bento GA; de Almeida LV; de Castro JC; Reis-Cunha JL; Barbosa VA; de Souza CF; Brazil RP; Valdivia HO; Bartholomeu DC PLoS One; 2019; 14(2):e0211831. PubMed ID: 30721272 [TBL] [Abstract][Full Text] [Related]
18. EST sequencing of blood-fed and Leishmania-infected midgut of Lutzomyia longipalpis, the principal visceral leishmaniasis vector in the Americas. Pitaluga AN; Beteille V; Lobo AR; Ortigão-Farias JR; Dávila AM; Souza AA; Ramalho-Ortigão JM; Traub-Cseko YM Mol Genet Genomics; 2009 Sep; 282(3):307-17. PubMed ID: 19565270 [TBL] [Abstract][Full Text] [Related]
19. Entomological Studies in Itaúna, Brazil, an Area With Visceral Leishmaniasis Transmission: Fauna Survey, Natural Leishmania Infection, and Molecular Characterization of the Species Circulating in Phlebotomine Sand Flies (Diptera: Psychodidae). Lopes JV; Michalsky EM; Pereira NCL; de Paula AJV; Lara-Silva FO; Silva-Lana R; Fortes-Dias CL; Pinheiro LC; Dias ES J Med Entomol; 2019 Sep; 56(5):1368-1376. PubMed ID: 31121044 [TBL] [Abstract][Full Text] [Related]