These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23312033)

  • 1. Room temperature hydrosilylation of silicon nanocrystals with bifunctional terminal alkenes.
    Yu Y; Hessel CM; Bogart TD; Panthani MG; Rasch MR; Korgel BA
    Langmuir; 2013 Feb; 29(5):1533-40. PubMed ID: 23312033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ gas-phase hydrosilylation of plasma-synthesized silicon nanocrystals.
    Jariwala BN; Dewey OS; Stradins P; Ciobanu CV; Agarwal S
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3033-41. PubMed ID: 21774486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution.
    Tan D; Ma Z; Xu B; Dai Y; Ma G; He M; Jin Z; Qiu J
    Phys Chem Chem Phys; 2011 Dec; 13(45):20255-61. PubMed ID: 21993573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary electrophoresis of ultrasmall carboxylate functionalized silicon nanoparticles.
    Eckhoff DA; Stuart JN; Sutin JD; Sweedler JV; Gratton E
    J Chem Phys; 2006 Aug; 125(8):081103. PubMed ID: 16964993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled Styrene Monolayer Capping of Silicon Nanocrystals by Room Temperature Hydrosilylation.
    Yu Y; Korgel BA
    Langmuir; 2015 Jun; 31(23):6532-7. PubMed ID: 26010097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent assembly of silver nanoparticles on hydrogen-terminated silicon surface.
    Khatri OP; Ichii T; Murase K; Kanehara M; Teranishi T; Sugimura H
    J Colloid Interface Sci; 2012 Sep; 382(1):22-7. PubMed ID: 22749525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled silicon surface functionalization by alkene hydrosilylation.
    Langner A; Panarello A; Rivillon S; Vassylyev O; Khinast JG; Chabal YJ
    J Am Chem Soc; 2005 Sep; 127(37):12798-9. PubMed ID: 16159263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoassisted tuning of silicon nanocrystal photoluminescence.
    Choi J; Wang NS; Reipa V
    Langmuir; 2007 Mar; 23(6):3388-94. PubMed ID: 17295527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brightly luminescent organically capped silicon nanocrystals fabricated at room temperature and atmospheric pressure.
    Kůsová K; Cibulka O; Dohnalová K; Pelant I; Valenta J; Fucíková A; Zídek K; Lang J; Englich J; Matejka P; Stepánek P; Bakardjieva S
    ACS Nano; 2010 Aug; 4(8):4495-504. PubMed ID: 20690596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacing enzymes with silicon nanocrystals through the thiol-ene reaction.
    Robidillo CJT; Aghajamali M; Faramus A; Sinelnikov R; Veinot JGC
    Nanoscale; 2018 Oct; 10(39):18706-18719. PubMed ID: 30270384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photophysical properties of luminescent silicon nanoparticles surface-modified with organic molecules via hydrosilylation.
    Miyano M; Kitagawa Y; Wada S; Kawashima A; Nakajima A; Nakanishi T; Ishioka J; Shibayama T; Watanabe S; Hasegawa Y
    Photochem Photobiol Sci; 2016 Jan; 15(1):99-104. PubMed ID: 26692283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-resistant monolayers prepared by hydrosilylation of alpha-oligo(ethylene glycol)-omega-alkenes on hydrogen-terminated silicon (111) surfaces.
    Yam CM; Lopez-Romero JM; Gu J; Cai C
    Chem Commun (Camb); 2004 Nov; (21):2510-1. PubMed ID: 15514840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterization of organic multilayers on silicon(111) formed by immobilization of molecular films on functionalized Si-C linked monolayers.
    Böcking T; James M; Coster HG; Chilcott TC; Barrow KD
    Langmuir; 2004 Oct; 20(21):9227-35. PubMed ID: 15461511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface morphology dependent photoluminescence from colloidal silicon nanocrystals.
    Warner JH; Rubinsztein-Dunlop H; Tilley RD
    J Phys Chem B; 2005 Oct; 109(41):19064-7. PubMed ID: 16853458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofunctional silicon nanoparticles by means of thiol-ene click chemistry.
    Ruizendaal L; Pujari SP; Gevaerts V; Paulusse JM; Zuilhof H
    Chem Asian J; 2011 Oct; 6(10):2776-86. PubMed ID: 21954077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkyl passivation and amphiphilic polymer coating of silicon nanocrystals for diagnostic imaging.
    Hessel CM; Rasch MR; Hueso JL; Goodfellow BW; Akhavan VA; Puvanakrishnan P; Tunnel JW; Korgel BA
    Small; 2010 Sep; 6(18):2026-34. PubMed ID: 20818646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonradical mechanisms for the uncatalyzed thermal functionalization of silicon surfaces by alkenes and alkynes: a density functional study.
    Coletti C; Marrone A; Giorgi G; Sgamellotti A; Cerofolini G; Re N
    Langmuir; 2006 Nov; 22(24):9949-56. PubMed ID: 17106984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkoxy-Terminated Si Surfaces: A New Reactive Platform for the Functionalization and Derivatization of Silicon Quantum Dots.
    Purkait TK; Iqbal M; Islam MA; Mobarok MH; Gonzalez CM; Hadidi L; Veinot JG
    J Am Chem Soc; 2016 Jun; 138(22):7114-20. PubMed ID: 27195971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals.
    Ghosh R; Giri PK; Imakita K; Fujii M
    Nanotechnology; 2014 Jan; 25(4):045703. PubMed ID: 24394591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional Bioinorganic Hybrids from Enzymes and Luminescent Silicon-Based Nanoparticles.
    Robidillo CJT; Islam MA; Aghajamali M; Faramus A; Sinelnikov R; Zhang X; Boekhoven J; Veinot JGC
    Langmuir; 2018 Jun; 34(22):6556-6569. PubMed ID: 29758156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.