These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 23312133)

  • 1. Vascular miRNAs after balloon angioplasty.
    Polimeni A; De Rosa S; Indolfi C
    Trends Cardiovasc Med; 2013 Jan; 23(1):9-14. PubMed ID: 23312133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes.
    Wang J; Yan CH; Li Y; Xu K; Tian XX; Peng CF; Tao J; Sun MY; Han YL
    Exp Cell Res; 2013 May; 319(8):1165-75. PubMed ID: 23518389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do microRNAs affect vascular smooth muscle cell biology?
    Robinson HC; Baker AH
    Curr Opin Lipidol; 2012 Oct; 23(5):405-11. PubMed ID: 22964990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of microRNAs in vascular diseases, inflammation, and angiogenesis.
    Urbich C; Kuehbacher A; Dimmeler S
    Cardiovasc Res; 2008 Sep; 79(4):581-8. PubMed ID: 18550634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Function, Role, and Clinical Application of MicroRNAs in Vascular Aging.
    Lin X; Zhan JK; Wang YJ; Tan P; Chen YY; Deng HQ; Liu YS
    Biomed Res Int; 2016; 2016():6021394. PubMed ID: 28097140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury?
    Albinsson S; Sessa WC
    Physiol Genomics; 2011 May; 43(10):529-33. PubMed ID: 20841497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. microRNAs Distinctively Regulate Vascular Smooth Muscle and Endothelial Cells: Functional Implications in Angiogenesis, Atherosclerosis, and In-Stent Restenosis.
    Santulli G
    Adv Exp Med Biol; 2015; 887():53-77. PubMed ID: 26662986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting smooth muscle microRNAs for therapeutic benefit in vascular disease.
    Albinsson S; Swärd K
    Pharmacol Res; 2013 Sep; 75():28-36. PubMed ID: 23611811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation.
    Ji R; Cheng Y; Yue J; Yang J; Liu X; Chen H; Dean DB; Zhang C
    Circ Res; 2007 Jun; 100(11):1579-88. PubMed ID: 17478730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of microRNAs in peripheral artery disease (review).
    Zhou X; Yuan P; He Y
    Mol Med Rep; 2012 Oct; 6(4):695-700. PubMed ID: 22767222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA-145 in vascular smooth muscle cell biology: a new therapeutic target for vascular disease.
    Zhang C
    Cell Cycle; 2009 Nov; 8(21):3469-73. PubMed ID: 19829088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis (review).
    Yu X; Li Z
    Int J Mol Med; 2014 Oct; 34(4):923-33. PubMed ID: 25197940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNAs in endothelial cell homeostasis and vascular disease.
    Fernández-Hernando C; Suárez Y
    Curr Opin Hematol; 2018 May; 25(3):227-236. PubMed ID: 29547400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of vascular smooth muscle cell proliferation and migration in vitro and neointimal hyperplasia in vivo by adenoviral-mediated atrial natriuretic peptide delivery.
    Larifla L; Déprez I; Pham I; Rideau D; Louzier V; Adam M; Eloit M; Foucan L; Adnot S; Teiger E
    J Gene Med; 2012 Jul; 14(7):459-67. PubMed ID: 22645072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remodeling of rabbit abdominal aorta and Cx43 gap junctions after stent placement: effect of balloon injury plus cholesterol-enriched diet.
    Hung TC; Lu SK; Su CH; Wu YJ; Hsieh CL; Lee WH; Tsai CH; Yeh HI
    Int Angiol; 2012 Feb; 31(1):62-9. PubMed ID: 22330626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plexiform vasculopathy of severe pulmonary arterial hypertension and microRNA expression.
    Bockmeyer CL; Maegel L; Janciauskiene S; Rische J; Lehmann U; Maus UA; Nickel N; Haverich A; Hoeper MM; Golpon HA; Kreipe H; Laenger F; Jonigk D
    J Heart Lung Transplant; 2012 Jul; 31(7):764-72. PubMed ID: 22534459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA regulation of smooth muscle gene expression and phenotype.
    Kang H; Hata A
    Curr Opin Hematol; 2012 May; 19(3):224-31. PubMed ID: 22406821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a novel vascular simulator and injury model to evaluate smooth muscle cell response following balloon angioplasty.
    Acampora KB; Langan EM; Miller RS; Laberge M
    Ann Vasc Surg; 2007 Nov; 21(6):734-41. PubMed ID: 17923382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blockade of vascular smooth muscle cell proliferation and intimal thickening after balloon injury by the sulfated oligosaccharide PI-88: phosphomannopentaose sulfate directly binds FGF-2, blocks cellular signaling, and inhibits proliferation.
    Francis DJ; Parish CR; McGarry M; Santiago FS; Lowe HC; Brown KJ; Bingley JA; Hayward IP; Cowden WB; Campbell JH; Campbell GR; Chesterman CN; Khachigian LM
    Circ Res; 2003 May; 92(8):e70-7. PubMed ID: 12690039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noncoding RNAs in smooth muscle cell homeostasis: implications in phenotypic switch and vascular disorders.
    Coll-Bonfill N; de la Cruz-Thea B; Pisano MV; Musri MM
    Pflugers Arch; 2016 Jun; 468(6):1071-87. PubMed ID: 27109570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.