These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 23312460)
41. The influence of root assimilated inorganic carbon on nitrogen acquisition/assimilation and carbon partitioning. Viktor A; Cramer MD New Phytol; 2005 Jan; 165(1):157-69. PubMed ID: 15720630 [TBL] [Abstract][Full Text] [Related]
42. Elevated CO2 Induces Root Defensive Mechanisms in Tomato Plants When Dealing with Ammonium Toxicity. Vega-Mas I; Pérez-Delgado CM; Marino D; Fuertes-Mendizábal T; González-Murua C; Márquez AJ; Betti M; Estavillo JM; González-Moro MB Plant Cell Physiol; 2017 Dec; 58(12):2112-2125. PubMed ID: 29059445 [TBL] [Abstract][Full Text] [Related]
43. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO(2) and elevated temperature. Zhao H; Li Y; Zhang X; Korpelainen H; Li C Tree Physiol; 2012 Nov; 32(11):1325-38. PubMed ID: 22918961 [TBL] [Abstract][Full Text] [Related]
44. N uptake and distribution in crops: an agronomical and ecophysiological perspective. Gastal F; Lemaire G J Exp Bot; 2002 Apr; 53(370):789-99. PubMed ID: 11912222 [TBL] [Abstract][Full Text] [Related]
45. Effect of selenium enrichment on metabolism of tomato (Solanum lycopersicum) fruit during postharvest ripening. Puccinelli M; Malorgio F; Terry LA; Tosetti R; Rosellini I; Pezzarossa B J Sci Food Agric; 2019 Mar; 99(5):2463-2472. PubMed ID: 30367482 [TBL] [Abstract][Full Text] [Related]
46. Pheophytinase Knockdown Impacts Carbon Metabolism and Nutraceutical Content Under Normal Growth Conditions in Tomato. Lira BS; Rosado D; Almeida J; de Souza AP; Buckeridge MS; Purgatto E; Guyer L; Hörtensteiner S; Freschi L; Rossi M Plant Cell Physiol; 2016 Mar; 57(3):642-53. PubMed ID: 26880818 [TBL] [Abstract][Full Text] [Related]
47. Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools. van der Rest B; Danoun S; Boudet AM; Rochange SF J Exp Bot; 2006; 57(6):1399-411. PubMed ID: 16551686 [TBL] [Abstract][Full Text] [Related]
48. Changes in free amino acid, phenolic, chlorophyll, carotenoid, and glycoalkaloid contents in tomatoes during 11 stages of growth and inhibition of cervical and lung human cancer cells by green tomato extracts. Choi SH; Lee SH; Kim HJ; Lee IS; Kozukue N; Levin CE; Friedman M J Agric Food Chem; 2010 Jul; 58(13):7547-56. PubMed ID: 20560602 [TBL] [Abstract][Full Text] [Related]
49. Modelling central metabolic fluxes by constraint-based optimization reveals metabolic reprogramming of developing Solanum lycopersicum (tomato) fruit. Colombié S; Nazaret C; Bénard C; Biais B; Mengin V; Solé M; Fouillen L; Dieuaide-Noubhani M; Mazat JP; Beauvoit B; Gibon Y Plant J; 2015 Jan; 81(1):24-39. PubMed ID: 25279440 [TBL] [Abstract][Full Text] [Related]
50. Ammonium supply induces differential metabolic adaptive responses in tomato according to leaf phenological stage. Poucet T; González-Moro MB; Cabasson C; Beauvoit B; Gibon Y; Dieuaide-Noubhani M; Marino D J Exp Bot; 2021 Apr; 72(8):3185-3199. PubMed ID: 33578414 [TBL] [Abstract][Full Text] [Related]
51. Abscisic acid root and leaf concentration in relation to biomass partitioning in salinized tomato plants. Lovelli S; Scopa A; Perniola M; Di Tommaso T; Sofo A J Plant Physiol; 2012 Feb; 169(3):226-33. PubMed ID: 22070973 [TBL] [Abstract][Full Text] [Related]
52. Spodoptera litura-mediated chemical defense is differentially modulated in older and younger systemic leaves of Solanum lycopersicum. Kundu A; Mishra S; Vadassery J Planta; 2018 Oct; 248(4):981-997. PubMed ID: 29987372 [TBL] [Abstract][Full Text] [Related]
53. Carbon-nitrogen ratio and in vitro assimilate partitioning patterns in Cyrtanthus guthrieae L. Ncube B; Finnie JF; Van Staden J Plant Physiol Biochem; 2014 Jan; 74():246-54. PubMed ID: 24321874 [TBL] [Abstract][Full Text] [Related]
54. Nitrogen dynamics in plant growth systems. Bloom AJ Life Support Biosph Sci; 1996; 3(1-2):35-41. PubMed ID: 11539158 [TBL] [Abstract][Full Text] [Related]
55. Biomass allocation and nutrients balance related to the concentration of Nitrogen and Phosphorus in Salvinia auriculata (Salviniaceae). Medeiros JC; Coelho FF; Teixeira E Braz J Biol; 2016 Jun; 76(2):461-8. PubMed ID: 26959946 [TBL] [Abstract][Full Text] [Related]
56. Effect of nighttime temperature on tomato plant defensive chemistry. Bradfield M; Stamp N J Chem Ecol; 2004 Sep; 30(9):1713-21. PubMed ID: 15586670 [TBL] [Abstract][Full Text] [Related]
57. Response to nitrate/ammonium nutrition of tomato (Solanum lycopersicum L.) plants overexpressing a prokaryotic NH4(+)-dependent asparagine synthetase. Martínez-Andújar C; Ghanem ME; Albacete A; Pérez-Alfocea F J Plant Physiol; 2013 May; 170(7):676-87. PubMed ID: 23394787 [TBL] [Abstract][Full Text] [Related]
58. The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Shu S; Tang Y; Yuan Y; Sun J; Zhong M; Guo S Plant Physiol Biochem; 2016 Oct; 107():344-353. PubMed ID: 27362298 [TBL] [Abstract][Full Text] [Related]
59. Prolonged root hypoxia effects on enzymes involved in nitrogen assimilation pathway in tomato plants. Horchani F; Aschi-Smiti S Plant Signal Behav; 2010 Dec; 5(12):1583-9. PubMed ID: 21139442 [TBL] [Abstract][Full Text] [Related]
60. Effect of Nickel Ions on the Physiological and Transcriptional Responses to Carbon and Nitrogen Metabolism in Tomato Roots under Low Nitrogen Levels. Zhang K; Li S; Xu Y; Zhou Y; Ran S; Zhao H; Huang W; Xu R; Zhong F Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232700 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]