These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 23313370)
1. Activities of daily living with reverse prostheses: importance of scapular compensation for functional mobility of the shoulder. Terrier A; Scheuber P; Pioletti DP; Farron A J Shoulder Elbow Surg; 2013 Jul; 22(7):948-53. PubMed ID: 23313370 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the role of glenosphere design and humeral component retroversion in avoiding scapular notching during reverse shoulder arthroplasty. Berhouet J; Garaud P; Favard L J Shoulder Elbow Surg; 2014 Feb; 23(2):151-8. PubMed ID: 23850310 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical evaluation of different designs of glenospheres in the SMR reverse total shoulder prosthesis: range of motion and risk of scapular notching. Chou J; Malak SF; Anderson IA; Astley T; Poon PC J Shoulder Elbow Surg; 2009; 18(3):354-9. PubMed ID: 19393929 [TBL] [Abstract][Full Text] [Related]
4. Effect of humeral component version on impingement in reverse total shoulder arthroplasty. Stephenson DR; Oh JH; McGarry MH; Rick Hatch GF; Lee TQ J Shoulder Elbow Surg; 2011 Jun; 20(4):652-8. PubMed ID: 21144775 [TBL] [Abstract][Full Text] [Related]
5. Scapular notching in reverse shoulder arthroplasty: validation of a computer impingement model. Roche CP; Marczuk Y; Wright TW; Flurin PH; Grey SG; Jones RB; Routman HD; Gilot GJ; Zuckerman JD Bull Hosp Jt Dis (2013); 2013; 71(4):278-83. PubMed ID: 24344620 [TBL] [Abstract][Full Text] [Related]
6. Influence of glenoid component design and humeral component retroversion on internal and external rotation in reverse shoulder arthroplasty: a cadaver study. Berhouet J; Garaud P; Favard L Orthop Traumatol Surg Res; 2013 Dec; 99(8):887-94. PubMed ID: 24211248 [TBL] [Abstract][Full Text] [Related]
7. Optimizing Deltoid Efficiency with Reverse Shoulder Arthroplasty Using a Novel Inset Center of Rotation Glenosphere Design. Roche CP; Hamilton MA; Diep P; Wright TW; Flurin PH; Zuckerman JD; Routman HD Bull Hosp Jt Dis (2013); 2015 Dec; 73 Suppl 1():S37-41. PubMed ID: 26631194 [TBL] [Abstract][Full Text] [Related]
8. Effects of glenosphere positioning on impingement-free internal and external rotation after reverse total shoulder arthroplasty. Li X; Knutson Z; Choi D; Lobatto D; Lipman J; Craig EV; Warren RF; Gulotta LV J Shoulder Elbow Surg; 2013 Jun; 22(6):807-13. PubMed ID: 22999850 [TBL] [Abstract][Full Text] [Related]
9. Implant impingement during internal rotation after reverse shoulder arthroplasty. The effect of implant configuration and scapula anatomy: A biomechanical study. Krämer M; Bäunker A; Wellmann M; Hurschler C; Smith T Clin Biomech (Bristol); 2016 Mar; 33():111-116. PubMed ID: 26970703 [TBL] [Abstract][Full Text] [Related]
10. Glenosphere design affects range of movement and risk of friction-type scapular impingement in reverse shoulder arthroplasty. Werner BS; Chaoui J; Walch G Bone Joint J; 2018 Sep; 100-B(9):1182-1186. PubMed ID: 30168761 [TBL] [Abstract][Full Text] [Related]
11. Scapular Notching After Reverse Total Shoulder Arthroplasty: Prediction Using Patient-Specific Osseous Anatomy, Implant Location, and Shoulder Motion. Kolmodin J; Davidson IU; Jun BJ; Sodhi N; Subhas N; Patterson TE; Li ZM; Iannotti JP; Ricchetti ET J Bone Joint Surg Am; 2018 Jul; 100(13):1095-1103. PubMed ID: 29975263 [TBL] [Abstract][Full Text] [Related]
12. Effect of humeral stem and glenosphere designs on range of motion and muscle length in reverse shoulder arthroplasty. Lädermann A; Denard PJ; Collin P; Zbinden O; Chiu JC; Boileau P; Olivier F; Walch G Int Orthop; 2020 Mar; 44(3):519-530. PubMed ID: 31900574 [TBL] [Abstract][Full Text] [Related]
13. Range of impingement-free abduction and adduction deficit after reverse shoulder arthroplasty. Hierarchy of surgical and implant-design-related factors. Gutiérrez S; Comiskey CA; Luo ZP; Pupello DR; Frankle MA J Bone Joint Surg Am; 2008 Dec; 90(12):2606-15. PubMed ID: 19047705 [TBL] [Abstract][Full Text] [Related]
14. The effect of glenosphere diameter in reverse shoulder arthroplasty on muscle force, joint load, and range of motion. Langohr GD; Giles JW; Athwal GS; Johnson JA J Shoulder Elbow Surg; 2015 Jun; 24(6):972-9. PubMed ID: 25547853 [TBL] [Abstract][Full Text] [Related]
15. Effect of scapular pillar anatomy on scapular impingement in adduction and rotation after reverse shoulder arthroplasty. Berhouet J; Garaud P; Slimane M; Nicot J; Banah J; Waynberger E; Favard L Orthop Traumatol Surg Res; 2014 Sep; 100(5):495-502. PubMed ID: 24998086 [TBL] [Abstract][Full Text] [Related]
16. Reverse shoulder arthroplasty components and surgical techniques that restore glenohumeral motion. Virani NA; Cabezas A; Gutiérrez S; Santoni BG; Otto R; Frankle M J Shoulder Elbow Surg; 2013 Feb; 22(2):179-87. PubMed ID: 22621793 [TBL] [Abstract][Full Text] [Related]
17. Reverse total shoulder arthroplasty: a biomechanical evaluation of humeral and glenosphere hardware configuration. Tashjian RZ; Burks RT; Zhang Y; Henninger HB J Shoulder Elbow Surg; 2015 Mar; 24(3):e68-77. PubMed ID: 25441564 [TBL] [Abstract][Full Text] [Related]
18. Posteroinferior relevant scapular neck offset in reverse shoulder arthroplasty: key player for motion and friction-type impingement in a computer model. Bauer S; Blakeney WG; Goyal N; Flayac H; Wang A; Corbaz J J Shoulder Elbow Surg; 2022 Dec; 31(12):2638-2646. PubMed ID: 35931331 [TBL] [Abstract][Full Text] [Related]