BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 23313669)

  • 1. Enzymatic saccharification coupling with polyester recovery from cotton-based waste textiles by phosphoric acid pretreatment.
    Shen F; Xiao W; Lin L; Yang G; Zhang Y; Deng S
    Bioresour Technol; 2013 Feb; 130():248-55. PubMed ID: 23313669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol production from cotton-based waste textiles.
    Jeihanipour A; Taherzadeh MJ
    Bioresour Technol; 2009 Jan; 100(2):1007-10. PubMed ID: 18723342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles.
    Jeihanipour A; Karimi K; Niklasson C; Taherzadeh MJ
    Waste Manag; 2010 Dec; 30(12):2504-9. PubMed ID: 20692142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-state NMR method for the quantification of cellulose and polyester in textile blends.
    Haslinger S; Hietala S; Hummel M; Maunu SL; Sixta H
    Carbohydr Polym; 2019 Mar; 207():11-16. PubMed ID: 30599991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advantages of a two-step enzymatic process for cotton-polyester blends.
    Schimper CB; Ibanescu C; Keckeis R; Bechtold T
    Biotechnol Lett; 2008 Mar; 30(3):455-9. PubMed ID: 17978850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetone-soluble cellulose acetate extracted from waste blended fabrics via ionic liquid catalyzed acetylation.
    Sun X; Lu C; Zhang W; Tian D; Zhang X
    Carbohydr Polym; 2013 Oct; 98(1):405-11. PubMed ID: 23987361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment.
    Hong F; Guo X; Zhang S; Han SF; Yang G; Jönsson LJ
    Bioresour Technol; 2012 Jan; 104():503-8. PubMed ID: 22154745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers.
    Haslinger S; Hummel M; Anghelescu-Hakala A; Määttänen M; Sixta H
    Waste Manag; 2019 Sep; 97():88-96. PubMed ID: 31447031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis.
    Moxley G; Zhu Z; Zhang YH
    J Agric Food Chem; 2008 Sep; 56(17):7885-90. PubMed ID: 18702466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa.
    Kwon OM; Kim SK; Jeong GT
    Bioprocess Biosyst Eng; 2016 Jul; 39(7):1173-80. PubMed ID: 27003825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification.
    Cara C; Ruiz E; Oliva JM; Sáez F; Castro E
    Bioresour Technol; 2008 Apr; 99(6):1869-76. PubMed ID: 17498947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cotton based composite fabric reinforced with waste polyester fibers for improved mechanical properties.
    Sharma K; Khilari V; Chaudhary BU; Jogi AB; Pandit AB; Kale RD
    Waste Manag; 2020 Apr; 107():227-234. PubMed ID: 32311640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing Phosphoric Acid plus Hydrogen Peroxide (PHP) Pretreatment on Wheat Straw by Response Surface Method for Enzymatic Saccharification.
    Qiu J; Wang Q; Shen F; Yang G; Zhang Y; Deng S; Zhang J; Zeng Y; Song C
    Appl Biochem Biotechnol; 2017 Mar; 181(3):1123-1139. PubMed ID: 27730521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases.
    Geddes CC; Peterson JJ; Roslander C; Zacchi G; Mullinnix MT; Shanmugam KT; Ingram LO
    Bioresour Technol; 2010 Mar; 101(6):1851-7. PubMed ID: 19880314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerobic biodegradation in freshwater and marine environments of textile microfibers generated in clothes laundering: Effects of cellulose and polyester-based microfibers on the microbiome.
    Zambrano MC; Pawlak JJ; Daystar J; Ankeny M; Goller CC; Venditti RA
    Mar Pollut Bull; 2020 Feb; 151():110826. PubMed ID: 32056618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater.
    Ahmad AA; Hameed BH
    J Hazard Mater; 2010 Jan; 173(1-3):487-93. PubMed ID: 19765899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release of polyester and cotton fibers from textiles in machine washings.
    Sillanpää M; Sainio P
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19313-19321. PubMed ID: 28669092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manufacture of fermentable sugar solutions from sugar cane bagasse hydrolyzed with phosphoric acid at atmospheric pressure.
    Gámez S; Ramírez JA; Garrote G; Vázquez M
    J Agric Food Chem; 2004 Jun; 52(13):4172-7. PubMed ID: 15212465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfibers generated from the laundering of cotton, rayon and polyester based fabrics and their aquatic biodegradation.
    Zambrano MC; Pawlak JJ; Daystar J; Ankeny M; Cheng JJ; Venditti RA
    Mar Pollut Bull; 2019 May; 142():394-407. PubMed ID: 31232317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose.
    Yu Q; Zhuang X; Yuan Z; Wang Q; Qi W; Wang W; Zhang Y; Xu J; Xu H
    Bioresour Technol; 2010 Jul; 101(13):4895-9. PubMed ID: 20004094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.