BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 23313682)

  • 1. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell.
    Villano M; Scardala S; Aulenta F; Majone M
    Bioresour Technol; 2013 Feb; 130():366-71. PubMed ID: 23313682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the set anode potential on the performance and internal energy losses of a methane-producing microbial electrolysis cell.
    Villano M; Ralo C; Zeppilli M; Aulenta F; Majone M
    Bioelectrochemistry; 2016 Feb; 107():1-6. PubMed ID: 26342333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the electrode size and arrangement in a microbial electrolysis cell.
    Gil-Carrera L; Mehta P; Escapa A; Morán A; García V; Guiot SR; Tartakovsky B
    Bioresour Technol; 2011 Oct; 102(20):9593-8. PubMed ID: 21875792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining biocatalyzed electrolysis with anaerobic digestion.
    Clauwaert P; Tolêdo R; van der Ha D; Crab R; Verstraete W; Hu H; Udert KM; Rabaey K
    Water Sci Technol; 2008; 57(4):575-9. PubMed ID: 18359998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system.
    Jiang Y; Su M; Li D
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2720-31. PubMed ID: 24425301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion.
    Cheng KY; Ho G; Cord-Ruwisch R
    Environ Sci Technol; 2011 Jan; 45(2):796-802. PubMed ID: 21142093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens.
    Geelhoed JS; Stams AJ
    Environ Sci Technol; 2011 Jan; 45(2):815-20. PubMed ID: 21158443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial community analysis in a long-term membrane-less microbial electrolysis cell with hydrogen and methane production.
    Rago L; Ruiz Y; Baeza JA; Guisasola A; Cortés P
    Bioelectrochemistry; 2015 Dec; 106(Pt B):359-68. PubMed ID: 26138343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell.
    Lee HS; Rittmann BE
    Environ Sci Technol; 2010 Feb; 44(3):948-54. PubMed ID: 20030379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A large cathode surface area promotes electromethanogenesis at a proper external voltage in a single coaxial microbial electrolysis cell.
    Li Y; Wang S; Dong R; Li X
    Sci Total Environ; 2023 Apr; 868():161721. PubMed ID: 36682571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetate enhances startup of a H₂-producing microbial biocathode.
    Jeremiasse AW; Hamelers HV; Croese E; Buisman CJ
    Biotechnol Bioeng; 2012 Mar; 109(3):657-64. PubMed ID: 22012403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen and methane production from swine wastewater using microbial electrolysis cells.
    Wagner RC; Regan JM; Oh SE; Zuo Y; Logan BE
    Water Res; 2009 Mar; 43(5):1480-8. PubMed ID: 19138783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode.
    Lee HS; Torres CI; Parameswaran P; Rittmann BE
    Environ Sci Technol; 2009 Oct; 43(20):7971-6. PubMed ID: 19921922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina.
    Yin Q; Zhu X; Zhan G; Bo T; Yang Y; Tao Y; He X; Li D; Yan Z
    J Environ Sci (China); 2016 Apr; 42():210-214. PubMed ID: 27090713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotransformation of Furanic and Phenolic Compounds with Hydrogen Gas Production in a Microbial Electrolysis Cell.
    Zeng X; Borole AP; Pavlostathis SG
    Environ Sci Technol; 2015 Nov; 49(22):13667-75. PubMed ID: 26503792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved hydrogen production in the microbial electrolysis cell by inhibiting methanogenesis using ultraviolet irradiation.
    Hou Y; Luo H; Liu G; Zhang R; Li J; Fu S
    Environ Sci Technol; 2014 Sep; 48(17):10482-8. PubMed ID: 25111871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell.
    Zeppilli M; Villano M; Aulenta F; Lampis S; Vallini G; Majone M
    Environ Sci Pollut Res Int; 2015 May; 22(10):7349-60. PubMed ID: 24994102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ammonia on electrochemical active biofilm in microbial electrolysis cells for synthetic swine wastewater treatment.
    Wang N; Feng Y; Li Y; Zhang L; Liu J; Li N; He W
    Water Res; 2022 Jul; 219():118570. PubMed ID: 35597221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Onset Investigation on Dynamic Change of Biohythane Generation and Microbial Structure in Dual-chamber versus Single-chamber Microbial Electrolysis Cells.
    Luo S; Liu F; Fu B; He K; Yang H; Zhang X; Liang P; Huang X
    Water Res; 2021 Aug; 201():117326. PubMed ID: 34147740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.