These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23313695)

  • 1. Harvesting microalgae with microwave synthesized magnetic microparticles.
    Prochazkova G; Safarik I; Branyik T
    Bioresour Technol; 2013 Feb; 130():472-7. PubMed ID: 23313695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergies of pH-induced calcium phosphate precipitation and magnetic separation for energy-efficient harvesting of freshwater microalgae.
    Kendir S; Franzreb M
    Bioresour Technol; 2024 Jan; 391(Pt B):129964. PubMed ID: 37926356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement on light penetrability and microalgae biomass production by periodically pre-harvesting Chlorella vulgaris cells with culture medium recycling.
    Huang Y; Sun Y; Liao Q; Fu Q; Xia A; Zhu X
    Bioresour Technol; 2016 Sep; 216():669-76. PubMed ID: 27289058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using magnetic materials to harvest microalgal biomass: evaluation of harvesting and detachment efficiency.
    Zhu LD; Hiltunen E; Li Z
    Environ Technol; 2019 Mar; 40(8):1006-1012. PubMed ID: 29219747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetophoretic harvesting of oleaginous Chlorella sp. by using biocompatible chitosan/magnetic nanoparticle composites.
    Lee K; Lee SY; Na JG; Jeon SG; Praveenkumar R; Kim DM; Chang WS; Oh YK
    Bioresour Technol; 2013 Dec; 149():575-8. PubMed ID: 24128604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium.
    Wu Z; Zhu Y; Huang W; Zhang C; Li T; Zhang Y; Li A
    Bioresour Technol; 2012 Apr; 110():496-502. PubMed ID: 22326335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical approach to freshwater microalgae harvesting with magnetic particles.
    Prochazkova G; Podolova N; Safarik I; Zachleder V; Branyik T
    Colloids Surf B Biointerfaces; 2013 Dec; 112():213-8. PubMed ID: 23988778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave assisted flocculation for harvesting of Chlorella vulgaris.
    Liu W; Cui Y; Cheng P; Huo S; Ma X; Chen Q; Cobb K; Chen P; Ma J; Gao X; Ruan R
    Bioresour Technol; 2020 Oct; 314():123770. PubMed ID: 32652448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture.
    Hadj-Romdhane F; Jaouen P; Pruvost J; Grizeau D; Van Vooren G; Bourseau P
    Bioresour Technol; 2012 Nov; 123():366-74. PubMed ID: 22940343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harvesting freshwater Chlorella vulgaris with flocculant derived from spent brewer's yeast.
    Prochazkova G; Kastanek P; Branyik T
    Bioresour Technol; 2015 Feb; 177():28-33. PubMed ID: 25479390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle.
    Discart V; Bilad MR; Marbelia L; Vankelecom IF
    Bioresour Technol; 2014; 152():321-8. PubMed ID: 24315936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Managing the cultivation and processing of microalgae to prolong storage in water-in-oil emulsions.
    Fernández L; Cheng YS; Scher H; VanderGheynst JS
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5427-33. PubMed ID: 24682481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient harvesting of marine microalgae Nannochloropsis maritima using magnetic nanoparticles.
    Hu YR; Wang F; Wang SK; Liu CZ; Guo C
    Bioresour Technol; 2013 Jun; 138():387-90. PubMed ID: 23639490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cultivation of microalgae (Oscillatoria okeni and Chlorella vulgaris) using tilapia-pond effluent and a comparison of their biomass removal efficiency.
    Attasat S; Wanichpongpan P; Ruenglertpanyakul W
    Water Sci Technol; 2013; 67(2):271-7. PubMed ID: 23168623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology.
    Bayat Tork M; Khalilzadeh R; Kouchakzadeh H
    Bioresour Technol; 2017 Nov; 243():583-588. PubMed ID: 28704739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency.
    Chu FF; Chu PN; Cai PJ; Li WW; Lam PK; Zeng RJ
    Bioresour Technol; 2013 Apr; 134():341-6. PubMed ID: 23517904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process.
    Du Z; Hu B; Shi A; Ma X; Cheng Y; Chen P; Liu Y; Lin X; Ruan R
    Bioresour Technol; 2012 Dec; 126():354-7. PubMed ID: 23116820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous electrocoagulation of Chlorella vulgaris in a novel channel-flow reactor: A pilot-scale harvesting study.
    Lucakova S; Branyikova I; Kovacikova S; Masojidek J; Ranglova K; Branyik T; Ruzicka MC
    Bioresour Technol; 2022 May; 351():126996. PubMed ID: 35292383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled cultivation and pre-harvesting of microalgae in a membrane photobioreactor (MPBR).
    Bilad MR; Discart V; Vandamme D; Foubert I; Muylaert K; Vankelecom IF
    Bioresour Technol; 2014 Mar; 155():410-7. PubMed ID: 24559585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of Microalga
    Savvidou MG; Dardavila MM; Georgiopoulou I; Louli V; Stamatis H; Kekos D; Voutsas E
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34202985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.