BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23313837)

  • 1. Ultrasound enhanced release of therapeutics from drug-releasing implants based on titania nanotube arrays.
    Aw MS; Losic D
    Int J Pharm; 2013 Feb; 443(1-2):154-62. PubMed ID: 23313837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiofrequency-triggered release for on-demand delivery of therapeutics from titania nanotube drug-eluting implants.
    Bariana M; Aw MS; Moore E; Voelcker NH; Losic D
    Nanomedicine (Lond); 2014; 9(8):1263-75. PubMed ID: 24359550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer micelles for delayed release of therapeutics from drug-releasing surfaces with nanotubular structures.
    Sinn Aw M; Addai-Mensah J; Losic D
    Macromol Biosci; 2012 Aug; 12(8):1048-52. PubMed ID: 22821826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion.
    Gulati K; Ramakrishnan S; Aw MS; Atkins GJ; Findlay DM; Losic D
    Acta Biomater; 2012 Jan; 8(1):449-56. PubMed ID: 21930254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multi-drug delivery system with sequential release using titania nanotube arrays.
    Aw MS; Addai-Mensah J; Losic D
    Chem Commun (Camb); 2012 Apr; 48(27):3348-50. PubMed ID: 22367413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoengineered drug-releasing Ti wires as an alternative for local delivery of chemotherapeutics in the brain.
    Gulati K; Aw MS; Losic D
    Int J Nanomedicine; 2012; 7():2069-76. PubMed ID: 22619543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties.
    Kumeria T; Mon H; Aw MS; Gulati K; Santos A; Griesser HJ; Losic D
    Colloids Surf B Biointerfaces; 2015 Jun; 130():255-63. PubMed ID: 25944564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titania nanotube arrays for local drug delivery: recent advances and perspectives.
    Losic D; Aw MS; Santos A; Gulati K; Bariana M
    Expert Opin Drug Deliv; 2015 Jan; 12(1):103-27. PubMed ID: 25376706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of drug-release kinetics in trabecular bone from titania nanotube implants.
    Aw MS; Khalid KA; Gulati K; Atkins GJ; Pivonka P; Findlay DM; Losic D
    Int J Nanomedicine; 2012; 7():4883-92. PubMed ID: 23028217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion.
    Çalışkan N; Bayram C; Erdal E; Karahaliloğlu Z; Denkbaş EB
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():100-5. PubMed ID: 24411357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local drug delivery to the bone by drug-releasing implants: perspectives of nano-engineered titania nanotube arrays.
    Gulati K; Aw MS; Findlay D; Losic D
    Ther Deliv; 2012 Jul; 3(7):857-73. PubMed ID: 22900467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive SrTiO(3) nanotube arrays: strontium delivery platform on Ti-based osteoporotic bone implants.
    Xin Y; Jiang J; Huo K; Hu T; Chu PK
    ACS Nano; 2009 Oct; 3(10):3228-34. PubMed ID: 19736918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological response of human suture mesenchymal cells to Titania nanotube-based implants for advanced craniosynostosis therapy.
    Bariana M; Dwivedi P; Ranjitkar S; Kaidonis JA; Losic D; Anderson PJ
    Colloids Surf B Biointerfaces; 2017 Feb; 150():59-67. PubMed ID: 27883932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel local drug delivery system: Superhydrophobic titanium oxide nanotube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger.
    Zhou J; Frank MA; Yang Y; Boccaccini AR; Virtanen S
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():277-283. PubMed ID: 29025658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes.
    Popat KC; Eltgroth M; Latempa TJ; Grimes CA; Desai TA
    Biomaterials; 2007 Nov; 28(32):4880-8. PubMed ID: 17697708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymeric micelles for multidrug delivery and combination therapy.
    Aw MS; Kurian M; Losic D
    Chemistry; 2013 Sep; 19(38):12586-601. PubMed ID: 23943229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indomethacin-loaded polymeric nanocarriers based on amphiphilic polyphosphazenes with poly (N-isopropylacrylamide) and ethyl tryptophan as side groups: Preparation, in vitro and in vivo evaluation.
    Zhang JX; Li XJ; Qiu LY; Li XH; Yan MQ; Yi Jin ; Zhu KJ
    J Control Release; 2006 Dec; 116(3):322-9. PubMed ID: 17109985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Titanium wire implants with nanotube arrays: A study model for localized cancer treatment.
    Kaur G; Willsmore T; Gulati K; Zinonos I; Wang Y; Kurian M; Hay S; Losic D; Evdokiou A
    Biomaterials; 2016 Sep; 101():176-88. PubMed ID: 27289379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TiO
    Wang Q; Huang JY; Li HQ; Chen Z; Zhao AZ; Wang Y; Zhang KQ; Sun HT; Al-Deyab SS; Lai YK
    Int J Nanomedicine; 2016; 11():4819-4834. PubMed ID: 27703349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells.
    Hu Y; Cai K; Luo Z; Xu D; Xie D; Huang Y; Yang W; Liu P
    Acta Biomater; 2012 Jan; 8(1):439-48. PubMed ID: 22040682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.