BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 23313845)

  • 1. UV-induced T-->C transition at a TT photoproduct site is dependent on Saccharomyces cerevisiae polymerase eta in vivo.
    Zhang H; Siede W
    Nucleic Acids Res; 2002 Mar; 30(5):1262-7. PubMed ID: 11861920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae.
    Donigan KA; Cerritelli SM; McDonald JP; Vaisman A; Crouch RJ; Woodgate R
    DNA Repair (Amst); 2015 Nov; 35():1-12. PubMed ID: 26340535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relative roles in vivo of Saccharomyces cerevisiae Pol eta, Pol zeta, Rev1 protein and Pol32 in the bypass and mutation induction of an abasic site, T-T (6-4) photoadduct and T-T cis-syn cyclobutane dimer.
    Gibbs PE; McDonald J; Woodgate R; Lawrence CW
    Genetics; 2005 Feb; 169(2):575-82. PubMed ID: 15520252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast DNA polymerase zeta is an efficient extender of primer ends opposite from 7,8-dihydro-8-Oxoguanine and O6-methylguanine.
    Haracska L; Prakash S; Prakash L
    Mol Cell Biol; 2003 Feb; 23(4):1453-9. PubMed ID: 12556503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The accurate bypass of pyrimidine dimers by DNA polymerase eta contributes to ultraviolet-induced mutagenesis.
    Menck CFM; Galhardo RS; Quinet A
    Mutat Res; 2024; 828():111840. PubMed ID: 37984186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of DNA polymerase eta in the bypass of a (6-4) TT photoproduct.
    Johnson RE; Haracska L; Prakash S; Prakash L
    Mol Cell Biol; 2001 May; 21(10):3558-63. PubMed ID: 11313481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Saccharomyces cerevisiae rev6-1 mutation, which inhibits both the lesion bypass and the recombination mode of DNA damage tolerance, is an allele of POL30, encoding proliferating cell nuclear antigen.
    Zhang H; Gibbs PE; Lawrence CW
    Genetics; 2006 Aug; 173(4):1983-9. PubMed ID: 16783012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage.
    Walmacq C; Cheung AC; Kireeva ML; Lubkowska L; Ye C; Gotte D; Strathern JN; Carell T; Cramer P; Kashlev M
    Mol Cell; 2012 Apr; 46(1):18-29. PubMed ID: 22405652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual targeting of Saccharomyces cerevisiae Pso2 to mitochondria and the nucleus, and its functional relevance in the repair of DNA interstrand crosslinks.
    Somashekara SC; Muniyappa K
    G3 (Bethesda); 2022 May; 12(6):. PubMed ID: 35482533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of nucleotide incorporation by human DNA polymerase eta differs from that of the yeast enzyme.
    Washington MT; Johnson RE; Prakash L; Prakash S
    Mol Cell Biol; 2003 Nov; 23(22):8316-22. PubMed ID: 14585988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast.
    Duchniewicz M; Germaniuk A; Westermann B; Neupert W; Schwarz E; Marszalek J
    Mol Cell Biol; 1999 Dec; 19(12):8201-10. PubMed ID: 10567545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast replicative DNA polymerases and their role at the replication fork.
    Kawasaki Y; Sugino A
    Mol Cells; 2001 Dec; 12(3):277-85. PubMed ID: 11804324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The many faces of DNA polymerases: strategies for mutagenesis and for mutational avoidance.
    Friedberg EC; Feaver WJ; Gerlach VL
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5681-3. PubMed ID: 10811923
    [No Abstract]   [Full Text] [Related]  

  • 14. Mitochondrial DNA replication: a PrimPol perspective.
    Bailey LJ; Doherty AJ
    Biochem Soc Trans; 2017 Apr; 45(2):513-529. PubMed ID: 28408491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA polymerases in the mitochondria: A critical review of the evidence.
    Krasich R; Copeland WC
    Front Biosci (Landmark Ed); 2017 Jan; 22(4):692-709. PubMed ID: 27814640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Polymerase Activity of Mammalian DNA Pol ζ Is Specifically Required for Cell and Embryonic Viability.
    Lange SS; Tomida J; Boulware KS; Bhetawal S; Wood RD
    PLoS Genet; 2016 Jan; 12(1):e1005759. PubMed ID: 26727495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic instability in budding and fission yeast-sources and mechanisms.
    Skoneczna A; Kaniak A; Skoneczny M
    FEMS Microbiol Rev; 2015 Nov; 39(6):917-67. PubMed ID: 26109598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA polymerase γ and disease: what we have learned from yeast.
    Lodi T; Dallabona C; Nolli C; Goffrini P; Donnini C; Baruffini E
    Front Genet; 2015; 6():106. PubMed ID: 25852747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of polymerase η in mitochondrial mutagenesis of Saccharomyces cerevisiae.
    Chatterjee N; Pabla R; Siede W
    Biochem Biophys Res Commun; 2013 Feb; 431(2):270-3. PubMed ID: 23313845
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.