These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23314495)

  • 21. Adapting the Lateral Root-Inducible System to Medicago truncatula.
    Herrbach V; Maillet F; Bensmihen S
    Methods Mol Biol; 2018; 1761():77-83. PubMed ID: 29525949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An expression database for roots of the model legume Medicago truncatula under salt stress.
    Li D; Su Z; Dong J; Wang T
    BMC Genomics; 2009 Nov; 10():517. PubMed ID: 19906315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Medicago truncatula LysM receptor-like kinase LYK9 plays a dual role in immunity and the arbuscular mycorrhizal symbiosis.
    Gibelin-Viala C; Amblard E; Puech-Pages V; Bonhomme M; Garcia M; Bascaules-Bedin A; Fliegmann J; Wen J; Mysore KS; le Signor C; Jacquet C; Gough C
    New Phytol; 2019 Aug; 223(3):1516-1529. PubMed ID: 31058335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptome analysis highlights preformed defences and signalling pathways controlled by the prAe1 quantitative trait locus (QTL), conferring partial resistance to Aphanomyces euteiches in Medicago truncatula.
    Badis Y; Bonhomme M; Lafitte C; Huguet S; Balzergue S; Dumas B; Jacquet C
    Mol Plant Pathol; 2015 Dec; 16(9):973-86. PubMed ID: 25765337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An oomycete effector targets a plant RNA helicase involved in root development and defense.
    Camborde L; Kiselev A; Pel MJC; Le Ru A; Jauneau A; Pouzet C; Dumas B; Gaulin E
    New Phytol; 2022 Mar; 233(5):2232-2248. PubMed ID: 34913494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic bacterium, but not nitrogen-fixing rhizobial symbiosis.
    Pfeilmeier S; George J; Morel A; Roy S; Smoker M; Stransfeld L; Downie JA; Peeters N; Malone JG; Zipfel C
    Plant Biotechnol J; 2019 Mar; 17(3):569-579. PubMed ID: 30120864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception.
    Bozsoki Z; Cheng J; Feng F; Gysel K; Vinther M; Andersen KR; Oldroyd G; Blaise M; Radutoiu S; Stougaard J
    Proc Natl Acad Sci U S A; 2017 Sep; 114(38):E8118-E8127. PubMed ID: 28874587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Medicago truncatula symbiosis mutants affected in the interaction with a biotrophic root pathogen.
    Rey T; Chatterjee A; Buttay M; Toulotte J; Schornack S
    New Phytol; 2015 Apr; 206(2):497-500. PubMed ID: 25495186
    [No Abstract]   [Full Text] [Related]  

  • 29. Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome.
    Schenkluhn L; Hohnjec N; Niehaus K; Schmitz U; Colditz F
    J Proteomics; 2010 Feb; 73(4):753-68. PubMed ID: 19895911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume-Rhizobium symbiosis.
    Nakagawa T; Kaku H; Shimoda Y; Sugiyama A; Shimamura M; Takanashi K; Yazaki K; Aoki T; Shibuya N; Kouchi H
    Plant J; 2011 Jan; 65(2):169-80. PubMed ID: 21223383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Medicago truncatula GRAS protein RAD1 supports arbuscular mycorrhiza symbiosis and Phytophthora palmivora susceptibility.
    Rey T; Bonhomme M; Chatterjee A; Gavrin A; Toulotte J; Yang W; André O; Jacquet C; Schornack S
    J Exp Bot; 2017 Dec; 68(21-22):5871-5881. PubMed ID: 29186498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cis-regulatory PLETHORA promoter elements directing root and nodule expression are conserved between Arabidopsis thaliana and Medicago truncatula.
    Franssen HJ; Kulikova O; Willemsen V; Heidstra R
    Plant Signal Behav; 2017 Feb; 12(2):e1278102. PubMed ID: 28067580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula.
    Feng F; Sun J; Radhakrishnan GV; Lee T; Bozsóki Z; Fort S; Gavrin A; Gysel K; Thygesen MB; Andersen KR; Radutoiu S; Stougaard J; Oldroyd GED
    Nat Commun; 2019 Nov; 10(1):5047. PubMed ID: 31695035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia.
    Anderson JP; Lichtenzveig J; Gleason C; Oliver RP; Singh KB
    Plant Physiol; 2010 Oct; 154(2):861-73. PubMed ID: 20713618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula.
    Bazin J; Khan GA; Combier JP; Bustos-Sanmamed P; Debernardi JM; Rodriguez R; Sorin C; Palatnik J; Hartmann C; Crespi M; Lelandais-Brière C
    Plant J; 2013 Jun; 74(6):920-34. PubMed ID: 23566016
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2.
    Liu W; Kohlen W; Lillo A; Op den Camp R; Ivanov S; Hartog M; Limpens E; Jamil M; Smaczniak C; Kaufmann K; Yang WC; Hooiveld GJ; Charnikhova T; Bouwmeester HJ; Bisseling T; Geurts R
    Plant Cell; 2011 Oct; 23(10):3853-65. PubMed ID: 22039214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel plant leucine-rich repeat receptor kinase regulates the response of Medicago truncatula roots to salt stress.
    de Lorenzo L; Merchan F; Laporte P; Thompson R; Clarke J; Sousa C; Crespi M
    Plant Cell; 2009 Feb; 21(2):668-80. PubMed ID: 19244136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Abscisic acid promotes pre-emergence stages of lateral root development in Medicago truncatula.
    Gonzalez AA; Agbévénou K; Herrbach V; Gough C; Bensmihen S
    Plant Signal Behav; 2015; 10(1):e977741. PubMed ID: 25517945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula.
    Camps C; Jardinaud MF; Rengel D; Carrère S; Hervé C; Debellé F; Gamas P; Bensmihen S; Gough C
    New Phytol; 2015 Oct; 208(1):224-40. PubMed ID: 25919491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Medicago truncatula hypermycorrhizal B9 mutant displays an altered response to phosphate and is more susceptible to Aphanomyces euteiches.
    Truong HN; Thalineau E; Bonneau L; Fournier C; Potin S; Balzergue S; VAN Tuinen D; Jeandroz S; Morandi D
    Plant Cell Environ; 2015 Jan; 38(1):73-88. PubMed ID: 24815324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.