BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23314598)

  • 1. Real-time X-ray-based 4D image guidance of minimally invasive interventions.
    Kuntz J; Gupta R; Schönberg SO; Semmler W; Kachelrieß M; Bartling S
    Eur Radiol; 2013 Jun; 23(6):1669-77. PubMed ID: 23314598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constrained reconstructions for 4D intervention guidance.
    Kuntz J; Flach B; Kueres R; Semmler W; Kachelriess M; Bartling S
    Phys Med Biol; 2013 May; 58(10):3283-300. PubMed ID: 23615179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low dose tomographic fluoroscopy: 4D intervention guidance with running prior.
    Flach B; Kuntz J; Brehm M; Kueres R; Bartling S; Kachelrieß M
    Med Phys; 2013 Oct; 40(10):101909. PubMed ID: 24089911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving image-guided radiation therapy of lung cancer by reconstructing 4D-CT from a single free-breathing 3D-CT on the treatment day.
    Wu G; Lian J; Shen D
    Med Phys; 2012 Dec; 39(12):7694-709. PubMed ID: 23231317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volume CT with a flat-panel detector on a mobile, isocentric C-arm: pre-clinical investigation in guidance of minimally invasive surgery.
    Siewerdsen JH; Moseley DJ; Burch S; Bisland SK; Bogaards A; Wilson BC; Jaffray DA
    Med Phys; 2005 Jan; 32(1):241-54. PubMed ID: 15719975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning-based reconstruction of interventional tools and devices from four X-ray projections for tomographic interventional guidance.
    Eulig E; Maier J; Knaup M; Bennett NR; Hörndler K; Wang AS; Kachelrieß M
    Med Phys; 2021 Oct; 48(10):5837-5850. PubMed ID: 34387362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical advances of interventional fluoroscopy and flat panel image receptor.
    Lin PJ
    Health Phys; 2008 Nov; 95(5):650-7. PubMed ID: 18849699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional guide-wire reconstruction from biplane image sequences for integrated display in 3-D vasculature.
    Baert SA; van de Kraats EB; van Walsum T; Viergever MA; Niessen WJ
    IEEE Trans Med Imaging; 2003 Oct; 22(10):1252-8. PubMed ID: 14552579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobile C-arm cone-beam CT for guidance of spine surgery: image quality, radiation dose, and integration with interventional guidance.
    Schafer S; Nithiananthan S; Mirota DJ; Uneri A; Stayman JW; Zbijewski W; Schmidgunst C; Kleinszig G; Khanna AJ; Siewerdsena JH
    Med Phys; 2011 Aug; 38(8):4563-74. PubMed ID: 21928628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New algorithm to simulate organ movement and deformation for four-dimensional dose calculation based on a three-dimensional CT and fluoroscopy of the thorax.
    Miyabe Y; Narita Y; Mizowaki T; Matsuo Y; Takayama K; Takahashi K; Kaneko S; Kawada N; Maruhashi A; Hiraoka M
    Med Phys; 2009 Oct; 36(10):4328-39. PubMed ID: 19928063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sub-Nyquist acquisition and constrained reconstruction in time resolved angiography.
    Mistretta CA
    Med Phys; 2011 Jun; 38(6):2975-85. PubMed ID: 21815371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time respiratory triggered four dimensional cone-beam CT halves imaging dose compared to conventional 4D CBCT.
    Cooper BJ; O'Brien RT; Shieh CC; Keall PJ
    Phys Med Biol; 2019 Mar; 64(7):07NT01. PubMed ID: 30754038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectrotemporal CT data acquisition and reconstruction at low dose.
    Clark DP; Lee CL; Kirsch DG; Badea CT
    Med Phys; 2015 Nov; 42(11):6317-36. PubMed ID: 26520724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flat panel detector-based cone beam computed tomography with a circle-plus-two-arcs data acquisition orbit: preliminary phantom study.
    Ning R; Tang X; Conover D; Yu R
    Med Phys; 2003 Jul; 30(7):1694-705. PubMed ID: 12906186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of image quality and dose management in CT fluoroscopy by iterative 3D image reconstruction.
    Grosser OS; Wybranski C; Kupitz D; Powerski M; Mohnike K; Pech M; Amthauer H; Ricke J
    Eur Radiol; 2017 Sep; 27(9):3625-3634. PubMed ID: 28168371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time fluoroscopic needle guidance in the interventional radiology suite using navigational software for percutaneous bone biopsies in children.
    Shellikeri S; Setser RM; Hwang TJ; Srinivasan A; Krishnamurthy G; Vatsky S; Girard E; Zhu X; Keller MS; Cahill AM
    Pediatr Radiol; 2017 Jul; 47(8):963-973. PubMed ID: 28474255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Error analysis of marker-based object localization using a single-plane XRII.
    Habets DF; Pollmann SI; Yuan X; Peters TM; Holdsworth DW
    Med Phys; 2009 Jan; 36(1):190-200. PubMed ID: 19235387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance venography and three-dimensional image fusion guidance provide a novel paradigm for endovascular recanalization of chronic central venous occlusion.
    Schwein A; Lu T; Chinnadurai P; Kitkungvan D; Shah DJ; Chakfe N; Lumsden AB; Bismuth J
    J Vasc Surg Venous Lymphat Disord; 2017 Jan; 5(1):60-69. PubMed ID: 27987612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient dose simulations for scanning-beam digital x-ray tomosynthesis of the lungs.
    Nelson G; Yoon S; Krishna G; Wilfley B; Fahrig R
    Med Phys; 2013 Nov; 40(11):111917. PubMed ID: 24320450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 4D digitally reconstructed radiography for verifying a lung tumor position during volumetric modulated arc therapy.
    Nakagawa K; Kida S; Haga A; Masutani Y; Yamashita H; Onoe T; Imae T; Tanaka K; Ohtomo K; Yoda K
    J Radiat Res; 2012 Jul; 53(4):628-32. PubMed ID: 22843630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.