BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 2331476)

  • 1. Inhibition by trimethylamine of methylamine oxidation by Paracoccus denitrificans and bacterium W3A1.
    Davidson VL; Kumar MA
    Biochim Biophys Acta; 1990 Apr; 1016(3):339-43. PubMed ID: 2331476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assimilation of methylamine by Paracoccus denitrificans involves formaldehyde transport by a specific carrier.
    Köstler M; Kleiner D
    FEMS Microbiol Lett; 1989 Nov; 53(1-2):1-4. PubMed ID: 2612879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-dependent semiquinone formation by methylamine dehydrogenase from Paracoccus denitrificans. Evidence for intermolecular electron transfer between quinone cofactors.
    Davidson VL; Jones LH; Kumar MA
    Biochemistry; 1990 Dec; 29(48):10786-91. PubMed ID: 2271681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of methylamine by a Paracoccus denitrificans mutant impaired in the synthesis of the bc1 complex and the aa3-type oxidase. Evidence for the existence of an alternative cytochrome c oxidase in this bacterium.
    De Gier JW; Van Spanning RJ; Oltmann LF; Stouthamer AH
    FEBS Lett; 1992 Jul; 306(1):23-6. PubMed ID: 1321057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of reaction of allylamine with the quinoprotein methylamine dehydrogenase.
    Davidson VL; Graichen ME; Jones LH
    Biochem J; 1995 Jun; 308 ( Pt 2)(Pt 2):487-92. PubMed ID: 7772031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of mau genes involved in methylamine metabolism in Paracoccus denitrificans.
    van der Palen CJ; Slotboom DJ; Jongejan L; Reijnders WN; Harms N; Duine JA; van Spanning RJ
    Eur J Biochem; 1995 Jun; 230(3):860-71. PubMed ID: 7601147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The oxidation of methylamine in Paracoccus denitrificans.
    De Gier JW; Van der Oost J; Harms N; Stouthamer AH; Van Spanning RJ
    Eur J Biochem; 1995 Apr; 229(1):148-54. PubMed ID: 7744026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors affecting the production of pyrroloquinoline quinone by the methylotrophic bacterium W3A1.
    McIntire WS; Weyler W
    Appl Environ Microbiol; 1987 Sep; 53(9):2183-8. PubMed ID: 3118809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex formation between methylamine dehydrogenase and amicyanin from Paracoccus denitrificans.
    Gray KA; Davidson VL; Knaff DB
    J Biol Chem; 1988 Oct; 263(28):13987-90. PubMed ID: 3170535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and properties of methylamine dehydrogenase from Paracoccus denitrificans.
    Husain M; Davidson VL
    J Bacteriol; 1987 Apr; 169(4):1712-7. PubMed ID: 3558322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the mau genes involved in methylamine metabolism in Paracoccus denitrificans is under control of a LysR-type transcriptional activator.
    Van Spanning RJ; van der Palen CJ; Slotboom DJ; Reijnders WN; Stouthamer AH; Duine JA
    Eur J Biochem; 1994 Nov; 226(1):201-10. PubMed ID: 7957249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state kinetic analysis of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans.
    Davidson VL
    Biochem J; 1989 Jul; 261(1):107-11. PubMed ID: 2775197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cofactor-directed inactivation by nucleophilic amines of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans.
    Davidson VL; Jones LH
    Biochim Biophys Acta; 1992 May; 1121(1-2):104-10. PubMed ID: 1599932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox properties of the quinoprotein methylamine dehydrogenase from paracoccus denitrificans.
    Husain M; Davidson VL; Gray KA; Knaff DB
    Biochemistry; 1987 Jun; 26(13):4139-43. PubMed ID: 3651442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation by carbon source of enzyme expression and slime production in bacterium W3A1.
    Davidson VL
    J Bacteriol; 1985 Nov; 164(2):941-3. PubMed ID: 3902804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition by cyclopropylamine of the quinoprotein methylamine dehydrogenase is mechanism-based and causes covalent cross-linking of alpha and beta subunits.
    Davidson VL; Jones LH
    Biochemistry; 1991 Feb; 30(7):1924-8. PubMed ID: 1993204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactions of benzylamines with methylamine dehydrogenase. Evidence for a carbanionic reaction intermediate and reaction mechanism similar to eukaryotic quinoproteins.
    Davidson VL; Jones LH; Graichen ME
    Biochemistry; 1992 Apr; 31(13):3385-90. PubMed ID: 1554720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state kinetic analysis for the reaction of ammonium and alkylammonium ions with methylamine dehydrogenase from bacterium W3A1.
    McIntire WS
    J Biol Chem; 1987 Aug; 262(23):11012-9. PubMed ID: 3611102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical cross-linking study of complex formation between methylamine dehydrogenase and amicyanin from Paracoccus denitrificans.
    Kumar MA; Davidson VL
    Biochemistry; 1990 Jun; 29(22):5299-304. PubMed ID: 2383547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deuterium kinetic isotope effect and stopped-flow kinetic studies of the quinoprotein methylamine dehydrogenase.
    Brooks HB; Jones LH; Davidson VL
    Biochemistry; 1993 Mar; 32(10):2725-9. PubMed ID: 8448129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.