BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 2331476)

  • 41. Localization of the major dehydrogenases in two methylotrophs by radiochemical labeling.
    Kasprzak AA; Steenkamp DJ
    J Bacteriol; 1983 Oct; 156(1):348-53. PubMed ID: 6311799
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isolation and characterization of Paracoccus denitrificans mutants with defects in the metabolism of one-carbon compounds.
    Harms N; de Vries GE; Maurer K; Veltkamp E; Stouthamer AH
    J Bacteriol; 1985 Dec; 164(3):1064-70. PubMed ID: 3905763
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three-dimensional structure of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans determined by molecular replacement at 2.8 A resolution.
    Chen L; Mathews FS; Davidson VL; Huizinga EG; Vellieux FM; Hol WG
    Proteins; 1992 Oct; 14(2):288-99. PubMed ID: 1409575
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of amine oxidase-containing peroxisomes in yeasts during growth on glucose in the presence of methylamine as the sole source of nitrogen.
    Zwart K; Veenhuis M; van Dijken JP; Harder W
    Arch Microbiol; 1980 Jun; 126(2):117-26. PubMed ID: 7192080
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A single methionine residue dictates the kinetic mechanism of interprotein electron transfer from methylamine dehydrogenase to amicyanin.
    Ma JK; Wang Y; Carrell CJ; Mathews FS; Davidson VL
    Biochemistry; 2007 Oct; 46(39):11137-46. PubMed ID: 17824674
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the structure and linkage of the covalent cofactor of methylamine dehydrogenase from the methylotrophic bacterium W3A1.
    McIntire WS; Stults JT
    Biochem Biophys Res Commun; 1986 Dec; 141(2):562-8. PubMed ID: 3801015
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of methylamine dehydrogenase from bacterium W3A1. Interaction with reductants and amino-containing compounds.
    Kenney WC; McIntire W
    Biochemistry; 1983 Aug; 22(16):3858-68. PubMed ID: 6311254
    [No Abstract]   [Full Text] [Related]  

  • 48. Elucidation of the role of the methylene-tetrahydromethanopterin dehydrogenase MtdA in the tetrahydromethanopterin-dependent oxidation pathway in Methylobacterium extorquens AM1.
    Martinez-Gomez NC; Nguyen S; Lidstrom ME
    J Bacteriol; 2013 May; 195(10):2359-67. PubMed ID: 23504017
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Trimethylamine N-oxide respiration by aerobic photosynthetic bacterium, Erythrobacter sp. OCh 114.
    Arata H; Serikawa Y; Takamiya K
    J Biochem; 1988 Jun; 103(6):1011-5. PubMed ID: 3170512
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Direct electrochemistry of the enzyme, methylamine dehydrogenase, from bacterium W3A1.
    Burrows AL; Hill HA; Leese TA; Mcintire WS; Nakayama H; Sanghera GS
    Eur J Biochem; 1991 Jul; 199(1):73-8. PubMed ID: 2065680
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evidence for a methylammonium-binding site on methylamine dehydrogenase of Thiobacillus versutus.
    Gorren AC; Moenne-Loccoz P; Backes G; de Vries S; Sanders-Loehr J; Duine JA
    Biochemistry; 1995 Oct; 34(40):12926-31. PubMed ID: 7548050
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Control of respiration rate in non-growing cells of Paracoccus denitrificans.
    Kucera I; Lampardová L; Dadák V
    Biochem J; 1987 Sep; 246(3):779-82. PubMed ID: 2825653
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Purification and characterization of azurin from the methylamine-utilizing obligate methylotroph Methylobacillus flagellatus KT.
    Dinarieva TY; Trashin SA; Kahnt J; Karyakin AA; Netrusov AI
    Can J Microbiol; 2012 Apr; 58(4):516-22. PubMed ID: 22455796
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystallographic and spectroscopic studies of native, aminoquinol, and monovalent cation-bound forms of methylamine dehydrogenase from Methylobacterium extorquens AM1.
    Labesse G; Ferrari D; Chen ZW; Rossi GL; Kuusk V; McIntire WS; Mathews FS
    J Biol Chem; 1998 Oct; 273(40):25703-12. PubMed ID: 9748238
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Arthrobacter P1, a fast growing versatile methylotroph with amine oxidase as a key enzyme in the metabolism of methylated amines.
    Levering PR; van Dijken JP; Veenhius M; Harder W
    Arch Microbiol; 1981 Mar; 129(1):72-80. PubMed ID: 7224781
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel denitrifying bacterial isolate that degrades trimethylamine both aerobically and anaerobically via two different pathways.
    Kim SG; Bae HS; Lee ST
    Arch Microbiol; 2001 Oct; 176(4):271-7. PubMed ID: 11685371
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Choline degradation in
    Parekh T; Tsai M; Spiro S
    J Bacteriol; 2024 Apr; 206(4):e0008124. PubMed ID: 38501746
    [No Abstract]   [Full Text] [Related]  

  • 58. Mechanism-based inactivation of a yeast methylamine oxidase mutant: implications for the functional role of the consensus sequence surrounding topaquinone.
    Cai D; Dove J; Nakamura N; Sanders-Loehr J; Klinman JP
    Biochemistry; 1997 Sep; 36(38):11472-8. PubMed ID: 9298967
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein redox potential measurements based on kinetic analysis with mediated continuous-flow column electrolytic spectroelectrochemical technique. Application to TTQ-containing methylamine dehydrogenase.
    Sato A; Torimura M; Takagi K; Kano K; Ikeda T
    Anal Chem; 2000 Jan; 72(1):150-5. PubMed ID: 10655647
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pseudomonas putida A ATCC 12633 oxidizes trimethylamine aerobically via two different pathways.
    Liffourrena AS; Salvano MA; Lucchesi GI
    Arch Microbiol; 2010 Jun; 192(6):471-6. PubMed ID: 20437165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.